[UdemyCourseDownloader] Data Science and Machine Learning Bootcamp with R 收录时间:2021-01-01 15:03:00 文件大小:2GB 下载次数:2 最近下载:2021-01-06 14:35:21 磁力链接: magnet:?xt=urn:btih:9b2727c349d063e5b9aa1caebd14d6385fd4e26f 立即下载 复制链接 文件列表 18. Capstone Data Project/2. Capstone Project Solutions Walkthrough.mp4 54MB 19. Introduction to Machine Learning with R/2. Introduction to Machine Learning.mp4 49MB 21. Machine Learning Project - Linear Regression/2. ML - Linear Regression Project - Solutions Part 1.mp4 48MB 23. Machine Learning Project - Logistic Regression/2. Logistic Regression Project Solutions - Part 1.mp4 47MB 14. Data Manipulation with R/8. Guide to Using Tidyr.mp4 47MB 20. Machine Learning with R - Linear Regression/2. Linear Regression with R - Part 1.mp4 47MB 33. Machine Learning with R - Neural Nets/2. Neural Nets with R.mp4 46MB 20. Machine Learning with R - Linear Regression/3. Linear Regression with R - Part 2.mp4 46MB 15. Data Visualization with R/2. Histograms.mp4 46MB 01. Course Introduction/4.1 R-Course-HTML-Notes.zip.zip 46MB 06. Development Environment Overview/2.1 R-Course-HTML-Notes.zip.zip 46MB 22. Machine Learning with R - Logistic Regression/3. Logistic Regression with R - Part 2.mp4 41MB 24. Machine Learning with R - K Nearest Neighbors/2. K Nearest Neighbors with R.mp4 40MB 22. Machine Learning with R - Logistic Regression/2. Logistic Regression with R - Part 1.mp4 40MB 15. Data Visualization with R/3. Scatterplots.mp4 38MB 12. R Programming Basics/10. Functions Training Exercise - Solutions.mp4 37MB 32. Machine Learning with R - Natural Language Processing/3. Natural Language Processing with R - Part 2.mp4 36MB 12. R Programming Basics/8. Functions.mp4 35MB 18. Capstone Data Project/1. Introduction to Capstone Project.mp4 35MB 09. R Data Frames/5. Overview of Data Frame Operations - Part 2.mp4 34MB 21. Machine Learning Project - Linear Regression/1. Introduction to Linear Regression Project.mp4 34MB 17. Interactive Visualizations with Plotly/1. Overview of Plotly and Interactive Visualizations.mp4 34MB 27. Machine Learning Project - Decision Trees and Random Forests/2. Tree Methods Project Solutions - Part 1.mp4 33MB 28. Machine Learning with R - Support Vector Machines/2. Support Vector Machines with R.mp4 33MB 31. Machine Learning Project - K-means Clustering/2. K Means Clustering Project - Solutions Walkthrough.mp4 33MB 23. Machine Learning Project - Logistic Regression/3. Logistic Regression Project Solutions - Part 2.mp4 33MB 16. Data Visualization Project/2. Data Visualization Project - Solutions Walkthrough - Part 1.mp4 33MB 23. Machine Learning Project - Logistic Regression/4. Logistic Regression Project - Solutions Part 3.mp4 32MB 16. Data Visualization Project/3. Data Visualization Project Solutions Walkthrough - Part 2.mp4 32MB 09. R Data Frames/4. Overview of Data Frame Operations - Part 1.mp4 30MB 09. R Data Frames/7. Data Frame Training Exercises - Solutions Walkthrough.mp4 29MB 26. Machine Learning with R - Decision Trees and Random Forests/2. Decision Trees and Random Forests with R.mp4 29MB 06. Development Environment Overview/3. Guide to RStudio.mp4 28MB 13. Advanced R Programming/3. Apply.mp4 28MB 21. Machine Learning Project - Linear Regression/3. ML - Linear Regression Project - Solutions Part 2.mp4 26MB 15. Data Visualization with R/10. ggplot2 Exercise Solutions.mp4 26MB 12. R Programming Basics/3. if, else, and else if Statements.mp4 26MB 06. Development Environment Overview/2. Course Notes.mp4 26MB 11. Data Input and Output with R/4. SQL with R.mp4 25MB 25. Machine Learning Project - K Nearest Neighbors/2. K Nearest Neighbors Project Solutions.mp4 25MB 14. Data Manipulation with R/2. Guide to Using Dplyr.mp4 25MB 08. R Matrices/8. Matrix Training Exercises - Solutions Walkthrough.mp4 25MB 11. Data Input and Output with R/3. Excel Files with R.mp4 24MB 29. Machine Learning Project - Support Vector Machines/2. Support Vector Machines Project - Solutions Part 1.mp4 24MB 15. Data Visualization with R/7. Coordinates and Faceting.mp4 24MB 13. Advanced R Programming/6. Dates and Timestamps.mp4 24MB 12. R Programming Basics/7. For Loops.mp4 23MB 20. Machine Learning with R - Linear Regression/4. Linear Regression with R - Part 3.mp4 23MB 12. R Programming Basics/5. Conditional Statements Training Exercise - Solutions Walkthrough.mp4 21MB 29. Machine Learning Project - Support Vector Machines/3. Support Vector Machines Project - Solutions Part 2.mp4 21MB 04. Mac OS Installation Set-Up/1. Mac OS Installation Procedure.mp4 21MB 34. Machine Learning Project - Neural Nets/2. Neural Nets Project - Solutions.mp4 21MB 14. Data Manipulation with R/3. Guide to Using Dplyr - Part 2.mp4 21MB 15. Data Visualization with R/6. 2 Variable Plotting.mp4 20MB 22. Machine Learning with R - Logistic Regression/1. Introduction to Logistic Regression.mp4 20MB 10. R Lists/1. List Basics.mp4 20MB 30. Machine Learning with R - K-means Clustering/2. K Means Clustering with R.mp4 19MB 08. R Matrices/2. Creating a Matrix.mp4 19MB 09. R Data Frames/2. Data Frame Basics.mp4 18MB 13. Advanced R Programming/2. Built-in R Features.mp4 18MB 03. Windows Installation Set-Up/1. Windows Installation Procedure.mp4 18MB 11. Data Input and Output with R/5. Web Scraping with R.mp4 17MB 09. R Data Frames/3. Data Frame Indexing and Selection.mp4 17MB 15. Data Visualization with R/4. Barplots.mp4 17MB 07. Introduction to R Basics/8. Vector Indexing and Slicing.mp4 16MB 08. R Matrices/6. Factor and Categorical Matrices.mp4 15MB 12. R Programming Basics/2. Logical Operators.mp4 15MB 15. Data Visualization with R/5. Boxplots.mp4 14MB 14. Data Manipulation with R/7. Dplyr Training Exercise - Solutions Walkthrough.vtt 14MB 14. Data Manipulation with R/7. Dplyr Training Exercise - Solutions Walkthrough.mp4 14MB 14. Data Manipulation with R/4. Pipe Operator.mp4 14MB 07. Introduction to R Basics/5. Vector Basics.mp4 14MB 07. Introduction to R Basics/11. R Basics Training Exercise - Solutions Walkthrough.mp4 13MB 01. Course Introduction/1. Introduction to Course.mp4 12MB 11. Data Input and Output with R/2. CSV Files with R.mp4 12MB 12. R Programming Basics/6. While Loops.mp4 12MB 15. Data Visualization with R/1. Overview of ggplot2.mp4 12MB 08. R Matrices/5. Matrix Selection and Indexing.mp4 12MB 25. Machine Learning Project - K Nearest Neighbors/1. Introduction K Nearest Neighbors Project.mp4 12MB 16. Data Visualization Project/1. Data Visualization Project.mp4 12MB 26. Machine Learning with R - Decision Trees and Random Forests/1. Introduction to Tree Methods.mp4 11MB 15. Data Visualization with R/8. Themes.mp4 11MB 33. Machine Learning with R - Neural Nets/1. Introduction to Neural Nets.mp4 11MB 08. R Matrices/4. Matrix Operations.mp4 11MB 07. Introduction to R Basics/7. Comparison Operators.mp4 11MB 32. Machine Learning with R - Natural Language Processing/2. Natural Language Processing with R - Part 1.mp4 10MB 20. Machine Learning with R - Linear Regression/1. Introduction to Linear Regression.mp4 10MB 23. Machine Learning Project - Logistic Regression/1. Introduction to Logistic Regression Project.mp4 10MB 13. Advanced R Programming/5. Regular Expressions.mp4 10MB 29. Machine Learning Project - Support Vector Machines/1. Introduction to SVM Project.mp4 9MB 13. Advanced R Programming/4. Math Functions with R.mp4 9MB 27. Machine Learning Project - Decision Trees and Random Forests/3. Tree Methods Project Solutions - Part 2.mp4 9MB 07. Introduction to R Basics/4. R Basic Data Types.mp4 9MB 07. Introduction to R Basics/3. Variables.mp4 9MB 30. Machine Learning with R - K-means Clustering/1. Introduction to K-Means Clustering.mp4 9MB 24. Machine Learning with R - K Nearest Neighbors/1. Introduction to K Nearest Neighbors.mp4 9MB 27. Machine Learning Project - Decision Trees and Random Forests/1. Introduction to Decision Trees and Random Forests Project.mp4 8MB 34. Machine Learning Project - Neural Nets/1. Introduction to Neural Nets Project.mp4 8MB 28. Machine Learning with R - Support Vector Machines/1. Introduction to Support Vector Machines.mp4 8MB 08. R Matrices/3. Matrix Arithmetic.mp4 8MB 07. Introduction to R Basics/2. Arithmetic in R.mp4 8MB 32. Machine Learning with R - Natural Language Processing/1. Introduction to Natural Language Processing.mp4 8MB 07. Introduction to R Basics/6. Vector Operations.mp4 8MB 31. Machine Learning Project - K-means Clustering/1. Introduction to K Means Clustering Project.mp4 7MB 01. Course Introduction/3. What is Data Science.mp4 7MB 15. Data Visualization with R/9. ggplot2 Exercises.mp4 7MB 12. R Programming Basics/9. Functions Training Exercise.mp4 7MB 01. Course Introduction/2. Course Curriculum.mp4 6MB 07. Introduction to R Basics/9. Getting Help with R and RStudio.mp4 6MB 07. Introduction to R Basics/1. Introduction to R Basics.mp4 6MB 07. Introduction to R Basics/10. R Basics Training Exercise.mp4 5MB 09. R Data Frames/6. Data Frame Training Exercise.mp4 4MB 12. R Programming Basics/4. Conditional Statements Training Exercise.mp4 3MB 08. R Matrices/7. Matrix Training Exercise.mp4 3MB 19. Introduction to Machine Learning with R/2.1 Machine Learning Slides.zip.zip 3MB 14. Data Manipulation with R/6. Dplyr Training Exercise.mp4 3MB 12. R Programming Basics/1. Introduction to Programming Basics.mp4 2MB 13. Advanced R Programming/1. Introduction to Advanced R Programming.mp4 2MB 08. R Matrices/1. Introduction to R Matrices.mp4 1MB 09. R Data Frames/1. Introduction to R Data Frames.mp4 1MB 14. Data Manipulation with R/1. Data Manipulation Overview.mp4 1MB 06. Development Environment Overview/1. Development Environment Overview.mp4 870KB 11. Data Input and Output with R/1. Introduction to Data Input and Output with R.mp4 870KB 33. Machine Learning with R - Neural Nets/2. Neural Nets with R.vtt 28KB 20. Machine Learning with R - Linear Regression/3. Linear Regression with R - Part 2.vtt 27KB 18. Capstone Data Project/2. Capstone Project Solutions Walkthrough.vtt 26KB 21. Machine Learning Project - Linear Regression/2. ML - Linear Regression Project - Solutions Part 1.vtt 26KB 12. R Programming Basics/10. Functions Training Exercise - Solutions.vtt 25KB 20. Machine Learning with R - Linear Regression/2. Linear Regression with R - Part 1.vtt 25KB 22. Machine Learning with R - Logistic Regression/2. Logistic Regression with R - Part 1.vtt 25KB 14. Data Manipulation with R/8. Guide to Using Tidyr.vtt 25KB 15. Data Visualization with R/2. Histograms.vtt 25KB 23. Machine Learning Project - Logistic Regression/2. Logistic Regression Project Solutions - Part 1.vtt 25KB 19. Introduction to Machine Learning with R/2. Introduction to Machine Learning.vtt 24KB 09. R Data Frames/5. Overview of Data Frame Operations - Part 2.vtt 24KB 12. R Programming Basics/8. Functions.vtt 23KB 24. Machine Learning with R - K Nearest Neighbors/2. K Nearest Neighbors with R.vtt 23KB 22. Machine Learning with R - Logistic Regression/3. Logistic Regression with R - Part 2.vtt 22KB 09. R Data Frames/4. Overview of Data Frame Operations - Part 1.vtt 22KB 15. Data Visualization with R/3. Scatterplots.vtt 21KB 31. Machine Learning Project - K-means Clustering/2. K Means Clustering Project - Solutions Walkthrough.vtt 21KB 27. Machine Learning Project - Decision Trees and Random Forests/2. Tree Methods Project Solutions - Part 1.vtt 20KB 23. Machine Learning Project - Logistic Regression/3. Logistic Regression Project Solutions - Part 2.vtt 19KB 28. Machine Learning with R - Support Vector Machines/2. Support Vector Machines with R.vtt 19KB 09. R Data Frames/7. Data Frame Training Exercises - Solutions Walkthrough.vtt 18KB 32. Machine Learning with R - Natural Language Processing/3. Natural Language Processing with R - Part 2.vtt 18KB 13. Advanced R Programming/3. Apply.vtt 18KB 12. R Programming Basics/3. if, else, and else if Statements.vtt 18KB 23. Machine Learning Project - Logistic Regression/4. Logistic Regression Project - Solutions Part 3.vtt 17KB 15. Data Visualization with R/10. ggplot2 Exercise Solutions.vtt 17KB 06. Development Environment Overview/3. Guide to RStudio.vtt 17KB 08. R Matrices/8. Matrix Training Exercises - Solutions Walkthrough.vtt 17KB 12. R Programming Basics/7. For Loops.vtt 16KB 14. Data Manipulation with R/2. Guide to Using Dplyr.vtt 16KB 11. Data Input and Output with R/3. Excel Files with R.vtt 16KB 12. R Programming Basics/5. Conditional Statements Training Exercise - Solutions Walkthrough.vtt 15KB 26. Machine Learning with R - Decision Trees and Random Forests/2. Decision Trees and Random Forests with R.vtt 15KB 22. Machine Learning with R - Logistic Regression/1. Introduction to Logistic Regression.vtt 15KB 13. Advanced R Programming/6. Dates and Timestamps.vtt 15KB 16. Data Visualization Project/2. Data Visualization Project - Solutions Walkthrough - Part 1.vtt 15KB 16. Data Visualization Project/3. Data Visualization Project Solutions Walkthrough - Part 2.vtt 15KB 11. Data Input and Output with R/4. SQL with R.vtt 14KB 20. Machine Learning with R - Linear Regression/4. Linear Regression with R - Part 3.vtt 14KB 29. Machine Learning Project - Support Vector Machines/2. Support Vector Machines Project - Solutions Part 1.vtt 14KB 21. Machine Learning Project - Linear Regression/3. ML - Linear Regression Project - Solutions Part 2.vtt 14KB 06. Development Environment Overview/2. Course Notes.vtt 13KB 08. R Matrices/2. Creating a Matrix.vtt 13KB 29. Machine Learning Project - Support Vector Machines/3. Support Vector Machines Project - Solutions Part 2.vtt 13KB 14. Data Manipulation with R/3. Guide to Using Dplyr - Part 2.vtt 13KB 30. Machine Learning with R - K-means Clustering/2. K Means Clustering with R.vtt 13KB 21. Machine Learning Project - Linear Regression/1. Introduction to Linear Regression Project.vtt 13KB 15. Data Visualization with R/7. Coordinates and Faceting.vtt 13KB 07. Introduction to R Basics/8. Vector Indexing and Slicing.vtt 13KB 25. Machine Learning Project - K Nearest Neighbors/2. K Nearest Neighbors Project Solutions.vtt 12KB 17. Interactive Visualizations with Plotly/1. Overview of Plotly and Interactive Visualizations.vtt 12KB 18. Capstone Data Project/1. Introduction to Capstone Project.vtt 11KB 09. R Data Frames/3. Data Frame Indexing and Selection.vtt 11KB 10. R Lists/1. List Basics.vtt 11KB 13. Advanced R Programming/2. Built-in R Features.vtt 11KB 34. Machine Learning Project - Neural Nets/2. Neural Nets Project - Solutions.vtt 11KB 09. R Data Frames/2. Data Frame Basics.vtt 11KB 15. Data Visualization with R/4. Barplots.vtt 10KB 08. R Matrices/6. Factor and Categorical Matrices.vtt 10KB 12. R Programming Basics/2. Logical Operators.vtt 10KB 15. Data Visualization with R/5. Boxplots.vtt 10KB 11. Data Input and Output with R/5. Web Scraping with R.vtt 9KB 15. Data Visualization with R/6. 2 Variable Plotting.vtt 9KB 12. R Programming Basics/6. While Loops.vtt 9KB 15. Data Visualization with R/1. Overview of ggplot2.vtt 9KB 07. Introduction to R Basics/11. R Basics Training Exercise - Solutions Walkthrough.vtt 9KB 03. Windows Installation Set-Up/1. Windows Installation Procedure.vtt 9KB 07. Introduction to R Basics/5. Vector Basics.vtt 9KB 08. R Matrices/5. Matrix Selection and Indexing.vtt 9KB 07. Introduction to R Basics/7. Comparison Operators.vtt 8KB 14. Data Manipulation with R/4. Pipe Operator.vtt 8KB 33. Machine Learning with R - Neural Nets/1. Introduction to Neural Nets.vtt 8KB 26. Machine Learning with R - Decision Trees and Random Forests/1. Introduction to Tree Methods.vtt 8KB 11. Data Input and Output with R/2. CSV Files with R.vtt 8KB 04. Mac OS Installation Set-Up/1. Mac OS Installation Procedure.vtt 8KB 20. Machine Learning with R - Linear Regression/1. Introduction to Linear Regression.vtt 7KB 15. Data Visualization with R/8. Themes.vtt 7KB 32. Machine Learning with R - Natural Language Processing/2. Natural Language Processing with R - Part 1.vtt 7KB 08. R Matrices/4. Matrix Operations.vtt 7KB 07. Introduction to R Basics/4. R Basic Data Types.vtt 7KB 07. Introduction to R Basics/3. Variables.vtt 7KB 24. Machine Learning with R - K Nearest Neighbors/1. Introduction to K Nearest Neighbors.vtt 6KB 27. Machine Learning Project - Decision Trees and Random Forests/3. Tree Methods Project Solutions - Part 2.vtt 6KB 30. Machine Learning with R - K-means Clustering/1. Introduction to K-Means Clustering.vtt 6KB 13. Advanced R Programming/5. Regular Expressions.vtt 6KB 07. Introduction to R Basics/2. Arithmetic in R.vtt 6KB 08. R Matrices/3. Matrix Arithmetic.vtt 6KB 35. Bonus Section - Discounts for Other Courses/1. Bonus Lecture Coupons.html 6KB 07. Introduction to R Basics/6. Vector Operations.vtt 6KB 32. Machine Learning with R - Natural Language Processing/1. Introduction to Natural Language Processing.vtt 6KB 28. Machine Learning with R - Support Vector Machines/1. Introduction to Support Vector Machines.vtt 6KB 01. Course Introduction/3. What is Data Science.vtt 5KB 25. Machine Learning Project - K Nearest Neighbors/1. Introduction K Nearest Neighbors Project.vtt 5KB 13. Advanced R Programming/4. Math Functions with R.vtt 4KB 16. Data Visualization Project/1. Data Visualization Project.vtt 4KB 15. Data Visualization with R/9. ggplot2 Exercises.vtt 4KB 07. Introduction to R Basics/1. Introduction to R Basics.vtt 4KB 01. Course Introduction/1. Introduction to Course.vtt 4KB 29. Machine Learning Project - Support Vector Machines/1. Introduction to SVM Project.vtt 4KB 12. R Programming Basics/9. Functions Training Exercise.vtt 3KB 34. Machine Learning Project - Neural Nets/1. Introduction to Neural Nets Project.vtt 3KB 07. Introduction to R Basics/10. R Basics Training Exercise.vtt 3KB 31. Machine Learning Project - K-means Clustering/1. Introduction to K Means Clustering Project.vtt 3KB 01. Course Introduction/2. Course Curriculum.vtt 3KB 07. Introduction to R Basics/9. Getting Help with R and RStudio.vtt 3KB 23. Machine Learning Project - Logistic Regression/1. Introduction to Logistic Regression Project.vtt 3KB 27. Machine Learning Project - Decision Trees and Random Forests/1. Introduction to Decision Trees and Random Forests Project.vtt 3KB 12. R Programming Basics/4. Conditional Statements Training Exercise.vtt 2KB 02. Course Best Practices/1. How to Get Help in the Course!.html 2KB 14. Data Manipulation with R/6. Dplyr Training Exercise.vtt 2KB 09. R Data Frames/6. Data Frame Training Exercise.vtt 2KB 05. Linux Installation/1. LinuxUnbuntu Installation Procedure.html 1KB 12. R Programming Basics/1. Introduction to Programming Basics.vtt 1KB 08. R Matrices/7. Matrix Training Exercise.vtt 1KB 13. Advanced R Programming/1. Introduction to Advanced R Programming.vtt 1KB 01. Course Introduction/4. Course FAQ.html 1KB 08. R Matrices/1. Introduction to R Matrices.vtt 1KB 09. R Data Frames/1. Introduction to R Data Frames.vtt 1022B 17. Interactive Visualizations with Plotly/2. Resources for Plotly and ggplot2.html 962B 14. Data Manipulation with R/1. Data Manipulation Overview.vtt 945B 11. Data Input and Output with R/1. Introduction to Data Input and Output with R.vtt 462B 06. Development Environment Overview/1. Development Environment Overview.vtt 451B 19. Introduction to Machine Learning with R/1. ISLR PDF.html 393B 02. Course Best Practices/3. Installation and Set-Up.html 335B 14. Data Manipulation with R/5. Quick note on Dpylr exercise.html 309B 02. Course Best Practices/2. Welcome to the Course..html 155B udemycoursedownloader.com.url 132B 08. R Matrices/4.1 Reference of Built-in Functions.html 117B Udemy Course downloader.txt 94B