Experimental Design for Data Analysis
- 收录时间:2023-12-07 05:54:18
- 文件大小:350MB
- 下载次数:1
- 最近下载:2023-12-07 05:54:18
- 磁力链接:
-
文件列表
- 03. Building and Training a Machine Learning Model/07. Building and Training a Regression Model in Python.mp4 23MB
- 04. Understanding and Overcoming Common Problems in Data Modeling/06. Building Training and Evaluating a Classification Model.mp4 20MB
- 03. Building and Training a Machine Learning Model/06. Building and Training a Regression Model for Price Prediction.mp4 20MB
- 04. Understanding and Overcoming Common Problems in Data Modeling/05. Preparing and Processing Data.mp4 19MB
- 06. Tuning Hyperparameters Using Cross Validation Scores/04. Hyperparameter Tuning a Decision Forest Classifier.mp4 17MB
- 03. Building and Training a Machine Learning Model/05. Preprocessing and Preparing Data.mp4 16MB
- 05. Leveraging Different Validation Strategies in Data Modeling/06. K-fold Cross-validation in scikit-learn.mp4 16MB
- 05. Leveraging Different Validation Strategies in Data Modeling/04. Cross-validation Using Azure ML Studio.mp4 16MB
- 03. Building and Training a Machine Learning Model/02. Getting Started with Azure ML Studio.mp4 13MB
- 06. Tuning Hyperparameters Using Cross Validation Scores/05. Tuning and Scoring Multiple Models.mp4 13MB
- 05. Leveraging Different Validation Strategies in Data Modeling/08. Stratified K-fold Cross-validation in scikit-learn.mp4 13MB
- 03. Building and Training a Machine Learning Model/03. Loading and Visualizing Data.mp4 13MB
- 03. Building and Training a Machine Learning Model/04. Exploring Relationships in Data.mp4 12MB
- 02. Designing an Experiment for Data Analysis/04. Hypothesis Testing.mp4 12MB
- 04. Understanding and Overcoming Common Problems in Data Modeling/02. Overfitting and Techniques to Mitigate Overfitting.mp4 11MB
- 05. Leveraging Different Validation Strategies in Data Modeling/05. K-fold Cross-validation and Variants.mp4 10MB
- 05. Leveraging Different Validation Strategies in Data Modeling/07. Repeated K-fold Cross-validation in scikit-learn.mp4 9MB
- 05. Leveraging Different Validation Strategies in Data Modeling/09. Group K-fold in scikit-learn.mp4 9MB
- 02. Designing an Experiment for Data Analysis/07. Designing a Machine Learning Experiment.mp4 9MB
- 04. Understanding and Overcoming Common Problems in Data Modeling/03. Accuracy, Precision, and Recall.mp4 8MB
- 02. Designing an Experiment for Data Analysis/06. ANOVA.mp4 8MB
- 04. Understanding and Overcoming Common Problems in Data Modeling/04. The ROC Curve.mp4 6MB
- 02. Designing an Experiment for Data Analysis/05. T-tests.mp4 5MB
- experimental-design-data-analysis.zip 5MB
- 05. Leveraging Different Validation Strategies in Data Modeling/03. Singular Cross-validation.mp4 5MB
- 06. Tuning Hyperparameters Using Cross Validation Scores/03. Decision Trees.mp4 5MB
- 02. Designing an Experiment for Data Analysis/03. Connecting the Dots with Data.mp4 4MB
- 01. Course Overview/01. Course Overview.mp4 4MB
- 05. Leveraging Different Validation Strategies in Data Modeling/02. Cross-validation in the ML Workflow.mp4 3MB
- 06. Tuning Hyperparameters Using Cross Validation Scores/01. Module Overview.mp4 3MB
- 06. Tuning Hyperparameters Using Cross Validation Scores/02. Hyperparameter Tuning.mp4 3MB
- 02. Designing an Experiment for Data Analysis/08. Summary.mp4 3MB
- 03. Building and Training a Machine Learning Model/01. Module Overview.mp4 2MB
- 04. Understanding and Overcoming Common Problems in Data Modeling/07. Summary.mp4 2MB
- 02. Designing an Experiment for Data Analysis/01. Module Overview.mp4 2MB
- 05. Leveraging Different Validation Strategies in Data Modeling/01. Module Overview.mp4 2MB
- 05. Leveraging Different Validation Strategies in Data Modeling/10. Summary.mp4 2MB
- 03. Building and Training a Machine Learning Model/08. Summary.mp4 2MB
- 02. Designing an Experiment for Data Analysis/02. Prerequisites and Course Outline.mp4 2MB
- 06. Tuning Hyperparameters Using Cross Validation Scores/06. Summary and Further Study.mp4 2MB
- 04. Understanding and Overcoming Common Problems in Data Modeling/01. Module Overview.mp4 2MB
- 03. Building and Training a Machine Learning Model/07. Building and Training a Regression Model in Python.srt 70KB
- 03. Building and Training a Machine Learning Model/06. Building and Training a Regression Model for Price Prediction.srt 67KB
- 04. Understanding and Overcoming Common Problems in Data Modeling/06. Building Training and Evaluating a Classification Model.srt 63KB
- 04. Understanding and Overcoming Common Problems in Data Modeling/05. Preparing and Processing Data.srt 59KB
- 02. Designing an Experiment for Data Analysis/04. Hypothesis Testing.srt 58KB
- 05. Leveraging Different Validation Strategies in Data Modeling/06. K-fold Cross-validation in scikit-learn.srt 55KB
- 04. Understanding and Overcoming Common Problems in Data Modeling/02. Overfitting and Techniques to Mitigate Overfitting.srt 53KB
- 06. Tuning Hyperparameters Using Cross Validation Scores/04. Hyperparameter Tuning a Decision Forest Classifier.srt 51KB
- 03. Building and Training a Machine Learning Model/05. Preprocessing and Preparing Data.srt 49KB
- 05. Leveraging Different Validation Strategies in Data Modeling/05. K-fold Cross-validation and Variants.srt 45KB
- 03. Building and Training a Machine Learning Model/03. Loading and Visualizing Data.srt 45KB
- 03. Building and Training a Machine Learning Model/02. Getting Started with Azure ML Studio.srt 43KB
- 05. Leveraging Different Validation Strategies in Data Modeling/04. Cross-validation Using Azure ML Studio.srt 43KB
- 02. Designing an Experiment for Data Analysis/07. Designing a Machine Learning Experiment.srt 42KB
- 06. Tuning Hyperparameters Using Cross Validation Scores/05. Tuning and Scoring Multiple Models.srt 40KB
- 03. Building and Training a Machine Learning Model/04. Exploring Relationships in Data.srt 39KB
- 05. Leveraging Different Validation Strategies in Data Modeling/08. Stratified K-fold Cross-validation in scikit-learn.srt 37KB
- 04. Understanding and Overcoming Common Problems in Data Modeling/03. Accuracy, Precision, and Recall.srt 37KB
- 02. Designing an Experiment for Data Analysis/06. ANOVA.srt 35KB
- 05. Leveraging Different Validation Strategies in Data Modeling/07. Repeated K-fold Cross-validation in scikit-learn.srt 31KB
- 05. Leveraging Different Validation Strategies in Data Modeling/09. Group K-fold in scikit-learn.srt 31KB
- 04. Understanding and Overcoming Common Problems in Data Modeling/04. The ROC Curve.srt 30KB
- 05. Leveraging Different Validation Strategies in Data Modeling/03. Singular Cross-validation.srt 26KB
- 02. Designing an Experiment for Data Analysis/05. T-tests.srt 25KB
- 06. Tuning Hyperparameters Using Cross Validation Scores/03. Decision Trees.srt 25KB
- 02. Designing an Experiment for Data Analysis/03. Connecting the Dots with Data.srt 23KB
- 06. Tuning Hyperparameters Using Cross Validation Scores/01. Module Overview.srt 16KB
- 06. Tuning Hyperparameters Using Cross Validation Scores/02. Hyperparameter Tuning.srt 16KB
- 05. Leveraging Different Validation Strategies in Data Modeling/02. Cross-validation in the ML Workflow.srt 14KB
- 01. Course Overview/01. Course Overview.srt 13KB
- 03. Building and Training a Machine Learning Model/01. Module Overview.srt 12KB
- 02. Designing an Experiment for Data Analysis/08. Summary.srt 12KB
- 04. Understanding and Overcoming Common Problems in Data Modeling/07. Summary.srt 12KB
- 03. Building and Training a Machine Learning Model/08. Summary.srt 10KB
- 02. Designing an Experiment for Data Analysis/02. Prerequisites and Course Outline.srt 10KB
- 05. Leveraging Different Validation Strategies in Data Modeling/10. Summary.srt 10KB
- 06. Tuning Hyperparameters Using Cross Validation Scores/06. Summary and Further Study.srt 9KB
- 04. Understanding and Overcoming Common Problems in Data Modeling/01. Module Overview.srt 9KB
- 05. Leveraging Different Validation Strategies in Data Modeling/01. Module Overview.srt 9KB
- 02. Designing an Experiment for Data Analysis/01. Module Overview.srt 9KB