[] Udemy - Hands On Natural Language Processing (NLP) using Python 收录时间:2020-02-05 04:10:13 文件大小:8GB 下载次数:86 最近下载:2021-01-18 15:23:53 磁力链接: magnet:?xt=urn:btih:9ffd6efe9d0aaf14f7b98e386013baf1a279be93 立即下载 复制链接 文件列表 6. NLP Core/25. LSA in Python Part 1.mp4 296MB 5. Numpy and Pandas/1. Introduction to Numpy.mp4 281MB 6. NLP Core/21. Understanding the N-Gram Model.mp4 259MB 5. Numpy and Pandas/2. Introduction to Pandas.mp4 252MB 6. NLP Core/16. Text Modelling using TF-IDF Model.mp4 223MB 7. Project 1 - Text Classification/9. Understanding Logistic Regression.mp4 202MB 6. NLP Core/24. Understanding Latent Semantic Analysis.mp4 194MB 6. NLP Core/26. LSA in Python Part 2.mp4 190MB 6. NLP Core/22. Building Character N-Gram Model.mp4 186MB 4. Regular Expressions/5. Shorthand Character Classes.mp4 182MB 3. Python Crash Course/11. List Comprehension.mp4 165MB 10. Word2Vec Analysis/1. Understanding Word Vectors.mp4 161MB 6. NLP Core/23. Building Word N-Gram Model.mp4 161MB 6. NLP Core/11. Text Modelling using Bag of Words Model.mp4 146MB 6. NLP Core/7. Stop word removal using NLTK.mp4 140MB 6. NLP Core/5. Stemming using NLTK.mp4 134MB 8. Project 2 - Twitter Sentiment Analysis/6. Preprocessing the tweets.mp4 133MB 3. Python Crash Course/5. Python Data Structures - Lists.mp4 129MB 3. Python Crash Course/7. Python Data Structures - Dictionaries.mp4 125MB 6. NLP Core/18. Building the TF-IDF Model Part 2.mp4 123MB 6. NLP Core/27. Word Synonyms and Antonyms using NLTK.mp4 118MB 7. Project 1 - Text Classification/6. Transforming data into BOW Model.mp4 115MB 6. NLP Core/17. Building the TF-IDF Model Part 1.mp4 110MB 6. NLP Core/19. Building the TF-IDF Model Part 3.mp4 110MB 6. NLP Core/8. Parts Of Speech Tagging.mp4 109MB 10. Word2Vec Analysis/6. Improving the Model.mp4 108MB 6. NLP Core/15. Building the BOW Model Part 4.mp4 108MB 6. NLP Core/4. Introduction to Stemming and Lemmatization.mp4 108MB 8. Project 2 - Twitter Sentiment Analysis/8. Plotting the results.mp4 103MB 9. Project 3 - Text Summarization/7. Calculating the sentence scores.mp4 100MB 3. Python Crash Course/8. Console and File IO in Python.mp4 97MB 7. Project 1 - Text Classification/12. Saving our Model.mp4 97MB 9. Project 3 - Text Summarization/1. Understanding Text Summarization.mp4 96MB 9. Project 3 - Text Summarization/3. Parsing the data using Beautiful Soup.mp4 94MB 3. Python Crash Course/10. Introduction to Classes and Objects.mp4 92MB 6. NLP Core/28. Word Negation Tracking in Python Part 1.mp4 91MB 6. NLP Core/12. Building the BOW Model Part 1.mp4 89MB 7. Project 1 - Text Classification/11. Testing Model performance.mp4 84MB 6. NLP Core/13. Building the BOW Model Part 2.mp4 82MB 4. Regular Expressions/3. Finding Patterns in Text Part 2.mp4 81MB 8. Project 2 - Twitter Sentiment Analysis/4. Fetching real time tweets.mp4 81MB 4. Regular Expressions/2. Finding Patterns in Text Part 1.mp4 79MB 6. NLP Core/14. Building the BOW Model Part 3.mp4 77MB 9. Project 3 - Text Summarization/8. Getting the summary.mp4 77MB 3. Python Crash Course/9. Introduction to Functions.mp4 77MB 6. NLP Core/6. Lemmatization using NLTK.mp4 76MB 1. Introduction to the Course/1. What is NLP.mp4 76MB 6. NLP Core/2. Tokenizing Words and Sentences.mp4 75MB 7. Project 1 - Text Classification/8. Creating training and test set.mp4 72MB 4. Regular Expressions/7. Preprocessing using Regex.mp4 72MB 7. Project 1 - Text Classification/4. Persisting the dataset.mp4 72MB 7. Project 1 - Text Classification/5. Preprocessing the data.mp4 67MB 3. Python Crash Course/3. Introduction to Loops.mp4 65MB 6. NLP Core/20. Building the TF-IDF Model Part 4.mp4 65MB 3. Python Crash Course/2. Conditional Statements.mp4 64MB 4. Regular Expressions/1. Introduction to Regular Expressions.mp4 63MB 7. Project 1 - Text Classification/1. Getting the data for Text Classification.mp4 62MB 3. Python Crash Course/4. Loop Control Statements.mp4 62MB 3. Python Crash Course/6. Python Data Structures - Tuples.mp4 61MB 3. Python Crash Course/1. Variables and Operations in Python.mp4 60MB 6. NLP Core/29. Word Negation Tracking in Python Part 2.mp4 59MB 9. Project 3 - Text Summarization/6. Building the histogram.mp4 59MB 7. Project 1 - Text Classification/3. Importing the dataset.mp4 58MB 7. Project 1 - Text Classification/13. Importing and using our Model.mp4 56MB 6. NLP Core/10. Named Entity Recognition.mp4 56MB 10. Word2Vec Analysis/2. Importing the data.mp4 55MB 10. Word2Vec Analysis/5. Testing Model Performance.mp4 54MB 4. Regular Expressions/4. Substituting Patterns in Text.mp4 54MB 9. Project 3 - Text Summarization/5. Tokenizing Article into sentences.mp4 51MB 10. Word2Vec Analysis/7. Exploring Pre-trained Models.mp4 50MB 9. Project 3 - Text Summarization/4. Preprocessing the data.mp4 48MB 7. Project 1 - Text Classification/7. Transform BOW model into TF-IDF Model.mp4 47MB 2. Getting the required softwares/3. A tour of Spyder IDE.mp4 47MB 8. Project 2 - Twitter Sentiment Analysis/3. Client Authentication.mp4 47MB 9. Project 3 - Text Summarization/2. Fetching article data from the web.mp4 44MB 10. Word2Vec Analysis/3. Preparing the data.mp4 39MB 8. Project 2 - Twitter Sentiment Analysis/7. Predicting sentiments of tweets.mp4 38MB 8. Project 2 - Twitter Sentiment Analysis/5. Loading TF-IDF Model and Classifier.mp4 36MB 8. Project 2 - Twitter Sentiment Analysis/2. Initializing Tokens.mp4 35MB 10. Word2Vec Analysis/4. Training the Word2Vec Model.mp4 34MB 2. Getting the required softwares/1. Installing Anaconda Python.mp4 33MB 7. Project 1 - Text Classification/10. Training our classifier.mp4 31MB 6. NLP Core/1. Installing NLTK in Python.mp4 29MB 8. Project 2 - Twitter Sentiment Analysis/1. Setting up Twitter Application.mp4 28MB 1. Introduction to the Course/2. Getting the Course Resources.mp4 18MB 5. Numpy and Pandas/2. Introduction to Pandas.srt 29KB 5. Numpy and Pandas/1. Introduction to Numpy.srt 27KB 6. NLP Core/21. Understanding the N-Gram Model.srt 27KB 6. NLP Core/25. LSA in Python Part 1.srt 26KB 5. Numpy and Pandas/2. Introduction to Pandas.vtt 25KB 6. NLP Core/21. Understanding the N-Gram Model.vtt 23KB 5. Numpy and Pandas/1. Introduction to Numpy.vtt 23KB 6. NLP Core/25. LSA in Python Part 1.vtt 22KB 6. NLP Core/16. Text Modelling using TF-IDF Model.srt 22KB 7. Project 1 - Text Classification/9. Understanding Logistic Regression.srt 20KB 6. NLP Core/22. Building Character N-Gram Model.srt 20KB 6. NLP Core/24. Understanding Latent Semantic Analysis.srt 19KB 6. NLP Core/16. Text Modelling using TF-IDF Model.vtt 19KB 7. Project 1 - Text Classification/9. Understanding Logistic Regression.vtt 18KB 6. NLP Core/22. Building Character N-Gram Model.vtt 18KB 4. Regular Expressions/5. Shorthand Character Classes.srt 17KB 6. NLP Core/24. Understanding Latent Semantic Analysis.vtt 17KB 3. Python Crash Course/11. List Comprehension.srt 17KB 3. Python Crash Course/5. Python Data Structures - Lists.srt 16KB 10. Word2Vec Analysis/1. Understanding Word Vectors.srt 16KB 4. Regular Expressions/5. Shorthand Character Classes.vtt 15KB 6. NLP Core/26. LSA in Python Part 2.srt 15KB 6. NLP Core/23. Building Word N-Gram Model.srt 15KB 6. NLP Core/11. Text Modelling using Bag of Words Model.srt 15KB 3. Python Crash Course/11. List Comprehension.vtt 14KB 3. Python Crash Course/7. Python Data Structures - Dictionaries.srt 14KB 10. Word2Vec Analysis/1. Understanding Word Vectors.vtt 14KB 3. Python Crash Course/5. Python Data Structures - Lists.vtt 14KB 6. NLP Core/27. Word Synonyms and Antonyms using NLTK.srt 13KB 6. NLP Core/26. LSA in Python Part 2.vtt 13KB 6. NLP Core/23. Building Word N-Gram Model.vtt 13KB 6. NLP Core/11. Text Modelling using Bag of Words Model.vtt 13KB 6. NLP Core/28. Word Negation Tracking in Python Part 1.srt 13KB 3. Python Crash Course/7. Python Data Structures - Dictionaries.vtt 12KB 6. NLP Core/27. Word Synonyms and Antonyms using NLTK.vtt 11KB 6. NLP Core/28. Word Negation Tracking in Python Part 1.vtt 11KB 4. Regular Expressions/2. Finding Patterns in Text Part 1.srt 11KB 6. NLP Core/4. Introduction to Stemming and Lemmatization.srt 10KB 4. Regular Expressions/3. Finding Patterns in Text Part 2.srt 10KB 3. Python Crash Course/3. Introduction to Loops.srt 10KB 9. Project 3 - Text Summarization/1. Understanding Text Summarization.srt 10KB 7. Project 1 - Text Classification/6. Transforming data into BOW Model.srt 10KB 3. Python Crash Course/8. Console and File IO in Python.srt 10KB 3. Python Crash Course/1. Variables and Operations in Python.srt 9KB 4. Regular Expressions/2. Finding Patterns in Text Part 1.vtt 9KB 9. Project 3 - Text Summarization/3. Parsing the data using Beautiful Soup.srt 9KB 6. NLP Core/18. Building the TF-IDF Model Part 2.srt 9KB 3. Python Crash Course/10. Introduction to Classes and Objects.srt 9KB 3. Python Crash Course/4. Loop Control Statements.srt 9KB 6. NLP Core/4. Introduction to Stemming and Lemmatization.vtt 9KB 8. Project 2 - Twitter Sentiment Analysis/8. Plotting the results.srt 9KB 4. Regular Expressions/3. Finding Patterns in Text Part 2.vtt 9KB 6. NLP Core/7. Stop word removal using NLTK.srt 9KB 3. Python Crash Course/3. Introduction to Loops.vtt 9KB 7. Project 1 - Text Classification/6. Transforming data into BOW Model.vtt 9KB 9. Project 3 - Text Summarization/1. Understanding Text Summarization.vtt 9KB 6. NLP Core/5. Stemming using NLTK.srt 8KB 6. NLP Core/15. Building the BOW Model Part 4.srt 8KB 3. Python Crash Course/8. Console and File IO in Python.vtt 8KB 6. NLP Core/19. Building the TF-IDF Model Part 3.srt 8KB 3. Python Crash Course/9. Introduction to Functions.srt 8KB 3. Python Crash Course/1. Variables and Operations in Python.vtt 8KB 6. NLP Core/18. Building the TF-IDF Model Part 2.vtt 8KB 3. Python Crash Course/10. Introduction to Classes and Objects.vtt 8KB 6. NLP Core/17. Building the TF-IDF Model Part 1.srt 8KB 9. Project 3 - Text Summarization/3. Parsing the data using Beautiful Soup.vtt 8KB 3. Python Crash Course/4. Loop Control Statements.vtt 8KB 6. NLP Core/29. Word Negation Tracking in Python Part 2.srt 8KB 4. Regular Expressions/4. Substituting Patterns in Text.srt 8KB 4. Regular Expressions/7. Preprocessing using Regex.srt 8KB 9. Project 3 - Text Summarization/7. Calculating the sentence scores.srt 8KB 10. Word2Vec Analysis/6. Improving the Model.srt 8KB 6. NLP Core/8. Parts Of Speech Tagging.srt 8KB 7. Project 1 - Text Classification/12. Saving our Model.srt 8KB 1. Introduction to the Course/1. What is NLP.srt 8KB 7. Project 1 - Text Classification/1. Getting the data for Text Classification.srt 8KB 8. Project 2 - Twitter Sentiment Analysis/8. Plotting the results.vtt 8KB 6. NLP Core/7. Stop word removal using NLTK.vtt 8KB 6. NLP Core/5. Stemming using NLTK.vtt 7KB 6. NLP Core/15. Building the BOW Model Part 4.vtt 7KB 6. NLP Core/19. Building the TF-IDF Model Part 3.vtt 7KB 3. Python Crash Course/9. Introduction to Functions.vtt 7KB 6. NLP Core/17. Building the TF-IDF Model Part 1.vtt 7KB 7. Project 1 - Text Classification/11. Testing Model performance.srt 7KB 3. Python Crash Course/6. Python Data Structures - Tuples.srt 7KB 6. NLP Core/29. Word Negation Tracking in Python Part 2.vtt 7KB 8. Project 2 - Twitter Sentiment Analysis/6. Preprocessing the tweets.srt 7KB 4. Regular Expressions/4. Substituting Patterns in Text.vtt 7KB 3. Python Crash Course/2. Conditional Statements.srt 7KB 9. Project 3 - Text Summarization/7. Calculating the sentence scores.vtt 7KB 4. Regular Expressions/7. Preprocessing using Regex.vtt 7KB 6. NLP Core/10. Named Entity Recognition.srt 7KB 7. Project 1 - Text Classification/12. Saving our Model.vtt 7KB 6. NLP Core/8. Parts Of Speech Tagging.vtt 7KB 10. Word2Vec Analysis/7. Exploring Pre-trained Models.srt 7KB 8. Project 2 - Twitter Sentiment Analysis/4. Fetching real time tweets.srt 7KB 10. Word2Vec Analysis/6. Improving the Model.vtt 7KB 7. Project 1 - Text Classification/1. Getting the data for Text Classification.vtt 7KB 1. Introduction to the Course/1. What is NLP.vtt 7KB 7. Project 1 - Text Classification/3. Importing the dataset.srt 7KB 10. Word2Vec Analysis/2. Importing the data.srt 6KB 7. Project 1 - Text Classification/4. Persisting the dataset.srt 6KB 7. Project 1 - Text Classification/11. Testing Model performance.vtt 6KB 4. Regular Expressions/1. Introduction to Regular Expressions.srt 6KB 3. Python Crash Course/6. Python Data Structures - Tuples.vtt 6KB 2. Getting the required softwares/3. A tour of Spyder IDE.srt 6KB 3. Python Crash Course/2. Conditional Statements.vtt 6KB 8. Project 2 - Twitter Sentiment Analysis/6. Preprocessing the tweets.vtt 6KB 7. Project 1 - Text Classification/5. Preprocessing the data.srt 6KB 6. NLP Core/13. Building the BOW Model Part 2.srt 6KB 6. NLP Core/10. Named Entity Recognition.vtt 6KB 9. Project 3 - Text Summarization/8. Getting the summary.srt 6KB 10. Word2Vec Analysis/7. Exploring Pre-trained Models.vtt 6KB 9. Project 3 - Text Summarization/2. Fetching article data from the web.srt 6KB 8. Project 2 - Twitter Sentiment Analysis/4. Fetching real time tweets.vtt 6KB 7. Project 1 - Text Classification/3. Importing the dataset.vtt 6KB 6. NLP Core/14. Building the BOW Model Part 3.srt 6KB 7. Project 1 - Text Classification/8. Creating training and test set.srt 6KB 7. Project 1 - Text Classification/4. Persisting the dataset.vtt 6KB 10. Word2Vec Analysis/2. Importing the data.vtt 6KB 6. NLP Core/12. Building the BOW Model Part 1.srt 5KB 9. Project 3 - Text Summarization/6. Building the histogram.srt 5KB 4. Regular Expressions/1. Introduction to Regular Expressions.vtt 5KB 6. NLP Core/2. Tokenizing Words and Sentences.srt 5KB 6. NLP Core/1. Installing NLTK in Python.srt 5KB 2. Getting the required softwares/3. A tour of Spyder IDE.vtt 5KB 8. Project 2 - Twitter Sentiment Analysis/2. Initializing Tokens.srt 5KB 6. NLP Core/20. Building the TF-IDF Model Part 4.srt 5KB 6. NLP Core/13. Building the BOW Model Part 2.vtt 5KB 7. Project 1 - Text Classification/5. Preprocessing the data.vtt 5KB 9. Project 3 - Text Summarization/8. Getting the summary.vtt 5KB 9. Project 3 - Text Summarization/2. Fetching article data from the web.vtt 5KB 7. Project 1 - Text Classification/8. Creating training and test set.vtt 5KB 7. Project 1 - Text Classification/13. Importing and using our Model.srt 5KB 6. NLP Core/14. Building the BOW Model Part 3.vtt 5KB 8. Project 2 - Twitter Sentiment Analysis/1. Setting up Twitter Application.srt 5KB 10. Word2Vec Analysis/5. Testing Model Performance.srt 5KB 6. NLP Core/12. Building the BOW Model Part 1.vtt 5KB 9. Project 3 - Text Summarization/6. Building the histogram.vtt 5KB 6. NLP Core/1. Installing NLTK in Python.vtt 5KB 6. NLP Core/2. Tokenizing Words and Sentences.vtt 5KB 8. Project 2 - Twitter Sentiment Analysis/2. Initializing Tokens.vtt 5KB 6. NLP Core/20. Building the TF-IDF Model Part 4.vtt 5KB 8. Project 2 - Twitter Sentiment Analysis/3. Client Authentication.srt 5KB 6. NLP Core/6. Lemmatization using NLTK.srt 4KB 9. Project 3 - Text Summarization/5. Tokenizing Article into sentences.srt 4KB 2. Getting the required softwares/1. Installing Anaconda Python.srt 4KB 8. Project 2 - Twitter Sentiment Analysis/1. Setting up Twitter Application.vtt 4KB 7. Project 1 - Text Classification/13. Importing and using our Model.vtt 4KB 10. Word2Vec Analysis/5. Testing Model Performance.vtt 4KB 10. Word2Vec Analysis/3. Preparing the data.srt 4KB 9. Project 3 - Text Summarization/4. Preprocessing the data.srt 4KB 8. Project 2 - Twitter Sentiment Analysis/3. Client Authentication.vtt 4KB 2. Getting the required softwares/1. Installing Anaconda Python.vtt 4KB 9. Project 3 - Text Summarization/5. Tokenizing Article into sentences.vtt 4KB 7. Project 1 - Text Classification/7. Transform BOW model into TF-IDF Model.srt 4KB 6. NLP Core/6. Lemmatization using NLTK.vtt 4KB 10. Word2Vec Analysis/3. Preparing the data.vtt 4KB 9. Project 3 - Text Summarization/4. Preprocessing the data.vtt 4KB 10. Word2Vec Analysis/4. Training the Word2Vec Model.srt 3KB 7. Project 1 - Text Classification/7. Transform BOW model into TF-IDF Model.vtt 3KB 6. NLP Core/9. POS Tag Meanings.html 3KB 10. Word2Vec Analysis/4. Training the Word2Vec Model.vtt 3KB 8. Project 2 - Twitter Sentiment Analysis/5. Loading TF-IDF Model and Classifier.srt 3KB 7. Project 1 - Text Classification/10. Training our classifier.srt 2KB 8. Project 2 - Twitter Sentiment Analysis/7. Predicting sentiments of tweets.srt 2KB 8. Project 2 - Twitter Sentiment Analysis/5. Loading TF-IDF Model and Classifier.vtt 2KB 1. Introduction to the Course/2. Getting the Course Resources.srt 2KB 7. Project 1 - Text Classification/10. Training our classifier.vtt 2KB 8. Project 2 - Twitter Sentiment Analysis/7. Predicting sentiments of tweets.vtt 2KB 1. Introduction to the Course/2. Getting the Course Resources.vtt 2KB 2. Getting the required softwares/4. How to take this course.html 2KB 6. NLP Core/3. How tokenization works - Text.html 2KB 4. Regular Expressions/6. Character Ranges - Text.html 1KB 7. Project 1 - Text Classification/2. Getting the data for Text Classification - Text.html 806B 2. Getting the required softwares/2. Installing Anaconda Python - Text.html 734B 11. Conclusion/1. Where you go from here.html 727B 1. Introduction to the Course/3. Getting the Course Resources - Text.html 614B 3. Python Crash Course/12. Test Your Skills.html 156B 4. Regular Expressions/8. Test Your Skills.html 156B [FCS Forum].url 133B [FreeCourseSite.com].url 127B [CourseClub.NET].url 123B