[] Udemy - Artificial Neural Networks for Business Managers in R Studio 收录时间:2023-10-12 20:10:59 文件大小:3GB 下载次数:1 最近下载:2023-10-12 20:10:59 磁力链接: magnet:?xt=urn:btih:a09c6150eb8a521283b9db997927c02e1d93b62e 立即下载 复制链接 文件列表 13 - Saving and Restoring Models/29 - Saving Restoring Models and Using Callbacks.mp4 216MB 12 - R Complex ANN Architectures using Functional API/27 - Building Regression Model with Functional AP.mp4 131MB 10 - R Building and training the Model/24 - BuildingCompiling and Training.mp4 131MB 4 - Neural Networks Stacking cells to create network/17 - Back Propagation.mp4 122MB 9 - R Dataset for classification problem/22 - Data Normalization and TestTrain Split.mp4 112MB 15 - Addon 1 Data Preprocessing/42 - Bivariate Analysis and Variable Transformation.mp4 100MB 10 - R Building and training the Model/25 - Evaluating and Predicting.mp4 99MB 15 - Addon 1 Data Preprocessing/36 - EDD in R.mp4 97MB 2 - Setting Up R Studio and R crash course/11 - Creating Barplots in R.mp4 97MB 16 - Linear Regression Model/51 - Assessing Accuracy of predicted coefficients.mp4 92MB 11 - The NeuralNets Package/26 - ANN with NeuralNets Package.mp4 84MB 15 - Addon 1 Data Preprocessing/48 - Correlation Matrix in R.mp4 83MB 2 - Setting Up R Studio and R crash course/7 - Packages in R.mp4 83MB 12 - R Complex ANN Architectures using Functional API/28 - Complex Architectures using Functional API.mp4 80MB 16 - Linear Regression Model/60 - TestTrain Split in R.mp4 76MB 15 - Addon 1 Data Preprocessing/47 - Correlation Matrix and causeeffect relationship.mp4 72MB 15 - Addon 1 Data Preprocessing/33 - The Data and the Data Dictionary.mp4 69MB 16 - Linear Regression Model/57 - Multiple Linear Regression in R.mp4 62MB 5 - Important concepts Common Interview questions/18 - Some Important Concepts.mp4 62MB 14 - Hyperparameter Tuning/30 - Hyperparameter Tuning.mp4 61MB 4 - Neural Networks Stacking cells to create network/16 - Gradient Descent.mp4 60MB 2 - Setting Up R Studio and R crash course/10 - Inputting data part 3 Importing from CSV or Text files.mp4 60MB 16 - Linear Regression Model/55 - The F statistic.mp4 56MB 15 - Addon 1 Data Preprocessing/43 - Variable transformation in R.mp4 55MB 6 - Standard Model Parameters/19 - Hyperparameters.mp4 45MB 3 - Single Cells Perceptron and Sigmoid Neuron/13 - Perceptron.mp4 45MB 15 - Addon 1 Data Preprocessing/46 - Dummy variable creation in R.mp4 44MB 16 - Linear Regression Model/52 - Assessing Model Accuracy RSE and R squared.mp4 44MB 16 - Linear Regression Model/50 - Basic equations and Ordinary Least Squared OLS method.mp4 43MB 2 - Setting Up R Studio and R crash course/12 - Creating Histograms in R.mp4 42MB 16 - Linear Regression Model/58 - TestTrain split.mp4 42MB 16 - Linear Regression Model/53 - Simple Linear Regression in R.mp4 41MB 2 - Setting Up R Studio and R crash course/8 - Inputting data part 1 Inbuilt datasets of R.mp4 41MB 4 - Neural Networks Stacking cells to create network/15 - Basic Terminologies.mp4 40MB 2 - Setting Up R Studio and R crash course/6 - Basics of R and R studio.mp4 39MB 15 - Addon 1 Data Preprocessing/45 - Dummy variable creation Handling qualitative data.mp4 37MB 2 - Setting Up R Studio and R crash course/5 - Installing R and R studio.mp4 36MB 3 - Single Cells Perceptron and Sigmoid Neuron/14 - Activation Functions.mp4 35MB 16 - Linear Regression Model/54 - Multiple Linear Regression.mp4 34MB 15 - Addon 1 Data Preprocessing/38 - Outlier Treatment in R.mp4 31MB 1 - Introduction/2 - Introduction to Neural Networks and Course flow.mp4 29MB 15 - Addon 1 Data Preprocessing/40 - Missing Value imputation in R.mp4 26MB 2 - Setting Up R Studio and R crash course/9 - Inputting data part 2 Manual data entry.mp4 26MB 16 - Linear Regression Model/59 - Bias Variance tradeoff.mp4 25MB 15 - Addon 1 Data Preprocessing/39 - Missing Value imputation.mp4 25MB 15 - Addon 1 Data Preprocessing/37 - Outlier Treatment.mp4 24MB 15 - Addon 1 Data Preprocessing/35 - Univariate Analysis and EDD.mp4 24MB 8 - Tensorflow and Keras/21 - Installing Keras and Tensorflow.mp4 23MB 16 - Linear Regression Model/56 - Interpreting result for categorical Variable.mp4 23MB 1 - Introduction/1 - Welcome to the course.mp4 21MB 1 - Introduction/4 - This is a milestone.mp4 21MB 15 - Addon 1 Data Preprocessing/44 - Non Usable Variables.mp4 20MB 15 - Addon 1 Data Preprocessing/32 - Data Exploration.mp4 20MB 15 - Addon 1 Data Preprocessing/41 - Seasonality in Data.mp4 17MB 8 - Tensorflow and Keras/20 - Keras and Tensorflow.mp4 15MB 15 - Addon 1 Data Preprocessing/31 - Gathering Business Knowledge.mp4 15MB 15 - Addon 1 Data Preprocessing/34 - Importing the dataset into R.mp4 13MB 18 - Congratulations & about your certificate/61 - The final milestone.mp4 12MB 16 - Linear Regression Model/49 - The problem statement.mp4 9MB 4 - Neural Networks Stacking cells to create network/17 - Back Propagation English.vtt 22KB 13 - Saving and Restoring Models/29 - Saving Restoring Models and Using Callbacks English.vtt 19KB 16 - Linear Regression Model/51 - Assessing Accuracy of predicted coefficients English.vtt 18KB 15 - Addon 1 Data Preprocessing/42 - Bivariate Analysis and Variable Transformation English.vtt 18KB 2 - Setting Up R Studio and R crash course/11 - Creating Barplots in R English.vtt 16KB 10 - R Building and training the Model/24 - BuildingCompiling and Training English.vtt 15KB 2 - Setting Up R Studio and R crash course/7 - Packages in R English.vtt 13KB 2 - Setting Up R Studio and R crash course/6 - Basics of R and R studio English.vtt 13KB 5 - Important concepts Common Interview questions/18 - Some Important Concepts English.vtt 12KB 12 - R Complex ANN Architectures using Functional API/27 - Building Regression Model with Functional AP English.vtt 12KB 15 - Addon 1 Data Preprocessing/36 - EDD in R English.vtt 12KB 16 - Linear Regression Model/58 - TestTrain split English.vtt 11KB 9 - R Dataset for classification problem/22 - Data Normalization and TestTrain Split English.vtt 11KB 4 - Neural Networks Stacking cells to create network/16 - Gradient Descent English.vtt 11KB 16 - Linear Regression Model/50 - Basic equations and Ordinary Least Squared OLS method English.vtt 11KB 15 - Addon 1 Data Preprocessing/47 - Correlation Matrix and causeeffect relationship English.vtt 11KB 16 - Linear Regression Model/55 - The F statistic English.vtt 10KB 4 - Neural Networks Stacking cells to create network/15 - Basic Terminologies English.vtt 10KB 3 - Single Cells Perceptron and Sigmoid Neuron/13 - Perceptron English.vtt 9KB 10 - R Building and training the Model/25 - Evaluating and Predicting English.vtt 9KB 14 - Hyperparameter Tuning/30 - Hyperparameter Tuning English.vtt 9KB 15 - Addon 1 Data Preprocessing/48 - Correlation Matrix in R English.vtt 9KB 6 - Standard Model Parameters/19 - Hyperparameters English.vtt 8KB 16 - Linear Regression Model/52 - Assessing Model Accuracy RSE and R squared English.vtt 8KB 16 - Linear Regression Model/53 - Simple Linear Regression in R English.vtt 8KB 16 - Linear Regression Model/57 - Multiple Linear Regression in R English.vtt 8KB 16 - Linear Regression Model/60 - TestTrain Split in R English.vtt 8KB 12 - R Complex ANN Architectures using Functional API/28 - Complex Architectures using Functional API English.vtt 8KB 15 - Addon 1 Data Preprocessing/43 - Variable transformation in R English.vtt 8KB 11 - The NeuralNets Package/26 - ANN with NeuralNets Package English.vtt 8KB 2 - Setting Up R Studio and R crash course/10 - Inputting data part 3 Importing from CSV or Text files English.vtt 8KB 16 - Linear Regression Model/59 - Bias Variance tradeoff English.vtt 7KB 3 - Single Cells Perceptron and Sigmoid Neuron/14 - Activation Functions English.vtt 7KB 15 - Addon 1 Data Preprocessing/33 - The Data and the Data Dictionary English.vtt 7KB 2 - Setting Up R Studio and R crash course/12 - Creating Histograms in R English.vtt 7KB 16 - Linear Regression Model/54 - Multiple Linear Regression English.vtt 7KB 2 - Setting Up R Studio and R crash course/5 - Installing R and R studio English.vtt 7KB 16 - Linear Regression Model/56 - Interpreting result for categorical Variable English.vtt 6KB 15 - Addon 1 Data Preprocessing/44 - Non Usable Variables English.vtt 5KB 15 - Addon 1 Data Preprocessing/46 - Dummy variable creation in R English.vtt 5KB 2 - Setting Up R Studio and R crash course/8 - Inputting data part 1 Inbuilt datasets of R English.vtt 5KB 15 - Addon 1 Data Preprocessing/45 - Dummy variable creation Handling qualitative data English.vtt 5KB 15 - Addon 1 Data Preprocessing/37 - Outlier Treatment English.vtt 4KB 1 - Introduction/2 - Introduction to Neural Networks and Course flow English.vtt 4KB 15 - Addon 1 Data Preprocessing/38 - Outlier Treatment in R English.vtt 4KB 15 - Addon 1 Data Preprocessing/39 - Missing Value imputation English.vtt 4KB 15 - Addon 1 Data Preprocessing/41 - Seasonality in Data English.vtt 4KB 15 - Addon 1 Data Preprocessing/31 - Gathering Business Knowledge English.vtt 4KB 15 - Addon 1 Data Preprocessing/40 - Missing Value imputation in R English.vtt 3KB 1 - Introduction/4 - This is a milestone English.vtt 3KB 8 - Tensorflow and Keras/20 - Keras and Tensorflow English.vtt 3KB 15 - Addon 1 Data Preprocessing/32 - Data Exploration English.vtt 3KB 2 - Setting Up R Studio and R crash course/9 - Inputting data part 2 Manual data entry English.vtt 3KB 15 - Addon 1 Data Preprocessing/35 - Univariate Analysis and EDD English.vtt 3KB 1 - Introduction/1 - Welcome to the course English.vtt 3KB 8 - Tensorflow and Keras/21 - Installing Keras and Tensorflow English.vtt 3KB 15 - Addon 1 Data Preprocessing/34 - Importing the dataset into R English.vtt 2KB 18 - Congratulations & about your certificate/62 - Bonus lecture.html 2KB 16 - Linear Regression Model/49 - The problem statement English.vtt 2KB 18 - Congratulations & about your certificate/61 - The final milestone English.vtt 2KB 9 - R Dataset for classification problem/23 - More about testtrain split.html 559B 1 - Introduction/3 - Course Resources.html 345B 0. Websites you may like/[FreeCourseSite.com].url 127B 0. Websites you may like/[CourseClub.Me].url 122B 0. Websites you may like/[GigaCourse.Com].url 49B 5 - Important concepts Common Interview questions/1 - Quiz.html 0B 6 - Standard Model Parameters/2 - Quiz.html 0B 7 - Practice Test/1 - Test your conceptual understanding.html 0B