[] Udemy - Deep Learning with Keras and Tensorflow in Python and R 收录时间:2020-10-13 14:56:12 文件大小:4GB 下载次数:16 最近下载:2021-01-22 16:08:16 磁力链接: magnet:?xt=urn:btih:a24dc0ed8c01e123276ab97f1f6716e974dd2995 立即下载 复制链接 文件列表 15. R - Saving and Restoring Models/1. Saving - Restoring Models and Using Callbacks.mp4 216MB 12. Python - Regression problems and Functional API/1. Building Neural Network for Regression Problem.mp4 156MB 14. Python - Saving and Restoring Models/1. Saving - Restoring Models and Using Callbacks.mp4 152MB 13. R - Regression Problem and Functional API/1. Building Regression Model with Functional AP.mp4 131MB 11. R - Building and training the Model/1. Building,Compiling and Training.mp4 131MB 5. Neural Networks - Stacking cells to create network/3. Back Propagation.mp4 122MB 9. Dataset for classification problem/3. R - Dataset, Normalization and Test-Train set.mp4 112MB 18. Add on Data Preprocessing/16. Bi-variate Analysis and Variable Transformation.mp4 100MB 11. R - Building and training the Model/2. Evaluating and Predicting.mp4 99MB 18. Add on Data Preprocessing/8. EDD in R.mp4 97MB 3. Setting up R Studio and R Crash Course/7. Creating Barplots in R.mp4 97MB 12. Python - Regression problems and Functional API/2. Using Functional API for complex architectures.mp4 92MB 4. Single Cells - Perceptron and Sigmoid Neuron/3. Python - Creating Perceptron model.mp4 87MB 3. Setting up R Studio and R Crash Course/3. Packages in R.mp4 83MB 10. Python - Building and training the Model/3. Compiling and Training the Neural Network model.mp4 82MB 13. R - Regression Problem and Functional API/2. Complex Architectures using Functional API.mp4 80MB 10. Python - Building and training the Model/2. Building the Neural Network using Keras.mp4 79MB 19. Test Train Split/4. Test train split in R.mp4 76MB 18. Add on Data Preprocessing/10. Outlier Treatment in Python.mp4 70MB 10. Python - Building and training the Model/4. Evaluating performance and Predicting using Keras.mp4 70MB 18. Add on Data Preprocessing/3. The Data and the Data Dictionary.mp4 69MB 2. Setting up Python and Jupyter Notebook/2. Opening Jupyter Notebook.mp4 65MB 2. Setting up Python and Jupyter Notebook/5. Strings in Python Python Basics.mp4 64MB 6. Important concepts Common Interview questions/1. Some Important Concepts.mp4 62MB 18. Add on Data Preprocessing/7. EDD in Python.mp4 62MB 16. Python - Hyperparameter Tuning/1. Hyperparameter Tuning.mp4 61MB 17. R - Hyperparameter Tuning/1. Hyperparameter Tuning.mp4 61MB 5. Neural Networks - Stacking cells to create network/2. Gradient Descent.mp4 60MB 2. Setting up Python and Jupyter Notebook/6. Lists, Tuples and Directories Python Basics.mp4 60MB 3. Setting up R Studio and R Crash Course/6. Inputting data part 3 Importing from CSV or Text files.mp4 60MB 9. Dataset for classification problem/1. Python - Dataset for classification problem.mp4 56MB 18. Add on Data Preprocessing/18. Variable transformation in R.mp4 55MB 2. Setting up Python and Jupyter Notebook/8. Working with Pandas Library of Python.mp4 47MB 7. Standard Model Parameters/1. Hyperparameters.mp4 45MB 19. Test Train Split/3. Test train split in Python.mp4 45MB 4. Single Cells - Perceptron and Sigmoid Neuron/1. Perceptron.mp4 45MB 9. Dataset for classification problem/2. Python - Normalization and Test-Train split.mp4 44MB 18. Add on Data Preprocessing/17. Variable transformation and deletion in Python.mp4 44MB 18. Add on Data Preprocessing/22. Dummy variable creation in R.mp4 44MB 2. Setting up Python and Jupyter Notebook/7. Working with Numpy Library of Python.mp4 44MB 3. Setting up R Studio and R Crash Course/8. Creating Histograms in R.mp4 42MB 19. Test Train Split/1. Test-train split.mp4 42MB 2. Setting up Python and Jupyter Notebook/3. Introduction to Jupyter.mp4 41MB 3. Setting up R Studio and R Crash Course/4. Inputting data part 1 Inbuilt datasets of R.mp4 41MB 5. Neural Networks - Stacking cells to create network/1. Basic Terminologies.mp4 40MB 2. Setting up Python and Jupyter Notebook/9. Working with Seaborn Library of Python.mp4 40MB 3. Setting up R Studio and R Crash Course/2. Basics of R and R studio.mp4 39MB 18. Add on Data Preprocessing/20. Dummy variable creation Handling qualitative data.mp4 37MB 3. Setting up R Studio and R Crash Course/1. Installing R and R studio.mp4 36MB 4. Single Cells - Perceptron and Sigmoid Neuron/2. Activation Functions.mp4 35MB 18. Add on Data Preprocessing/11. Outlier Treatment in R.mp4 31MB 1. Introduction/1. Introduction.mp4 29MB 18. Add on Data Preprocessing/4. Importing Data in Python.mp4 28MB 18. Add on Data Preprocessing/21. Dummy variable creation in Python.mp4 27MB 18. Add on Data Preprocessing/14. Missing Value imputation in R.mp4 26MB 3. Setting up R Studio and R Crash Course/5. Inputting data part 2 Manual data entry.mp4 26MB 19. Test Train Split/2. Bias Variance trade-off.mp4 25MB 18. Add on Data Preprocessing/12. Missing Value imputation.mp4 25MB 18. Add on Data Preprocessing/9. Outlier Treatment.mp4 24MB 18. Add on Data Preprocessing/6. Univariate Analysis and EDD.mp4 24MB 18. Add on Data Preprocessing/13. Missing Value Imputation in Python.mp4 23MB 8. Tensorflow and Keras/3. Installing TensorFlow and Keras in R.mp4 23MB 18. Add on Data Preprocessing/1. Gathering Business Knowledge.mp4 22MB 18. Add on Data Preprocessing/2. Data Exploration.mp4 21MB 18. Add on Data Preprocessing/19. Non Usable Variables.mp4 20MB 8. Tensorflow and Keras/2. Installing Tensorflow and Keras in Python.mp4 20MB 18. Add on Data Preprocessing/15. Seasonality in Data.mp4 17MB 2. Setting up Python and Jupyter Notebook/1. Installing Python and Anaconda.mp4 16MB 8. Tensorflow and Keras/1. Keras and Tensorflow.mp4 15MB 18. Add on Data Preprocessing/5. Importing the dataset into R.mp4 13MB 2. Setting up Python and Jupyter Notebook/4. Arithmetic operators in Python Python Basics.mp4 13MB 10. Python - Building and training the Model/1. Different ways to create ANN using Keras.mp4 11MB 1. Introduction/2.1 keras.zip 6MB 2. Setting up Python and Jupyter Notebook/8.1 Product.txt 139KB 2. Setting up Python and Jupyter Notebook/8.2 Customer.csv 64KB 5. Neural Networks - Stacking cells to create network/3. Back Propagation.srt 23KB 12. Python - Regression problems and Functional API/1. Building Neural Network for Regression Problem.srt 22KB 15. R - Saving and Restoring Models/1. Saving - Restoring Models and Using Callbacks.srt 20KB 14. Python - Saving and Restoring Models/1. Saving - Restoring Models and Using Callbacks.srt 19KB 18. Add on Data Preprocessing/16. Bi-variate Analysis and Variable Transformation.srt 18KB 2. Setting up Python and Jupyter Notebook/6. Lists, Tuples and Directories Python Basics.srt 17KB 2. Setting up Python and Jupyter Notebook/5. Strings in Python Python Basics.srt 16KB 11. R - Building and training the Model/1. Building,Compiling and Training.srt 15KB 4. Single Cells - Perceptron and Sigmoid Neuron/3. Python - Creating Perceptron model.srt 15KB 3. Setting up R Studio and R Crash Course/7. Creating Barplots in R.srt 13KB 6. Important concepts Common Interview questions/1. Some Important Concepts.srt 13KB 13. R - Regression Problem and Functional API/1. Building Regression Model with Functional AP.srt 13KB 18. Add on Data Preprocessing/10. Outlier Treatment in Python.srt 13KB 2. Setting up Python and Jupyter Notebook/3. Introduction to Jupyter.srt 12KB 9. Dataset for classification problem/3. R - Dataset, Normalization and Test-Train set.srt 12KB 10. Python - Building and training the Model/2. Building the Neural Network using Keras.srt 12KB 5. Neural Networks - Stacking cells to create network/2. Gradient Descent.srt 12KB 18. Add on Data Preprocessing/8. EDD in R.srt 12KB 12. Python - Regression problems and Functional API/2. Using Functional API for complex architectures.srt 12KB 3. Setting up R Studio and R Crash Course/3. Packages in R.srt 11KB 3. Setting up R Studio and R Crash Course/2. Basics of R and R studio.srt 11KB 2. Setting up Python and Jupyter Notebook/7. Working with Numpy Library of Python.srt 10KB 18. Add on Data Preprocessing/7. EDD in Python.srt 10KB 19. Test Train Split/1. Test-train split.srt 10KB 4. Single Cells - Perceptron and Sigmoid Neuron/1. Perceptron.srt 10KB 10. Python - Building and training the Model/3. Compiling and Training the Neural Network model.srt 10KB 5. Neural Networks - Stacking cells to create network/1. Basic Terminologies.srt 10KB 16. Python - Hyperparameter Tuning/1. Hyperparameter Tuning.srt 9KB 17. R - Hyperparameter Tuning/1. Hyperparameter Tuning.srt 9KB 11. R - Building and training the Model/2. Evaluating and Predicting.srt 9KB 2. Setting up Python and Jupyter Notebook/2. Opening Jupyter Notebook.srt 9KB 18. Add on Data Preprocessing/18. Variable transformation in R.srt 9KB 10. Python - Building and training the Model/4. Evaluating performance and Predicting using Keras.srt 9KB 7. Standard Model Parameters/1. Hyperparameters.srt 9KB 19. Test Train Split/4. Test train split in R.srt 8KB 13. R - Regression Problem and Functional API/2. Complex Architectures using Functional API.srt 8KB 2. Setting up Python and Jupyter Notebook/8. Working with Pandas Library of Python.srt 8KB 19. Test Train Split/3. Test train split in Python.srt 8KB 4. Single Cells - Perceptron and Sigmoid Neuron/2. Activation Functions.srt 8KB 18. Add on Data Preprocessing/3. The Data and the Data Dictionary.srt 8KB 18. Add on Data Preprocessing/17. Variable transformation and deletion in Python.srt 8KB 2. Setting up Python and Jupyter Notebook/9. Working with Seaborn Library of Python.srt 8KB 9. Dataset for classification problem/1. Python - Dataset for classification problem.srt 7KB 3. Setting up R Studio and R Crash Course/6. Inputting data part 3 Importing from CSV or Text files.srt 6KB 19. Test Train Split/2. Bias Variance trade-off.srt 6KB 3. Setting up R Studio and R Crash Course/8. Creating Histograms in R.srt 6KB 9. Dataset for classification problem/2. Python - Normalization and Test-Train split.srt 6KB 3. Setting up R Studio and R Crash Course/1. Installing R and R studio.srt 6KB 18. Add on Data Preprocessing/4. Importing Data in Python.srt 6KB 18. Add on Data Preprocessing/21. Dummy variable creation in Python.srt 6KB 18. Add on Data Preprocessing/19. Non Usable Variables.srt 5KB 18. Add on Data Preprocessing/22. Dummy variable creation in R.srt 5KB 18. Add on Data Preprocessing/20. Dummy variable creation Handling qualitative data.srt 5KB 1. Introduction/1. Introduction.srt 5KB 18. Add on Data Preprocessing/9. Outlier Treatment.srt 4KB 18. Add on Data Preprocessing/11. Outlier Treatment in R.srt 4KB 18. Add on Data Preprocessing/12. Missing Value imputation.srt 4KB 18. Add on Data Preprocessing/13. Missing Value Imputation in Python.srt 4KB 3. Setting up R Studio and R Crash Course/4. Inputting data part 1 Inbuilt datasets of R.srt 4KB 2. Setting up Python and Jupyter Notebook/4. Arithmetic operators in Python Python Basics.srt 4KB 18. Add on Data Preprocessing/1. Gathering Business Knowledge.srt 4KB 8. Tensorflow and Keras/2. Installing Tensorflow and Keras in Python.srt 4KB 18. Add on Data Preprocessing/15. Seasonality in Data.srt 4KB 18. Add on Data Preprocessing/2. Data Exploration.srt 4KB 8. Tensorflow and Keras/1. Keras and Tensorflow.srt 4KB 18. Add on Data Preprocessing/14. Missing Value imputation in R.srt 3KB 18. Add on Data Preprocessing/6. Univariate Analysis and EDD.srt 3KB 8. Tensorflow and Keras/3. Installing TensorFlow and Keras in R.srt 3KB 3. Setting up R Studio and R Crash Course/5. Inputting data part 2 Manual data entry.srt 3KB 18. Add on Data Preprocessing/5. Importing the dataset into R.srt 3KB 2. Setting up Python and Jupyter Notebook/1. Installing Python and Anaconda.srt 3KB 10. Python - Building and training the Model/1. Different ways to create ANN using Keras.srt 2KB Readme.txt 962B 5. Neural Networks - Stacking cells to create network/4. Quiz.html 166B 1. Introduction/2. Course Resources.html 117B [GigaCourse.com].url 49B