[] Udemy - The Ultimate Pandas Bootcamp Advanced Python Data Analysis
- 收录时间:2021-12-02 22:56:39
- 文件大小:10GB
- 下载次数:1
- 最近下载:2021-12-02 22:56:39
- 磁力链接:
-
文件列表
- 13. Data Formats And IO/3. Reading HTML.mp4 104MB
- 11. Regex And Text Manipulation/19. Is This A Valid Email.mp4 80MB
- 11. Regex And Text Manipulation/21. Pandas str contains(), split() And replace() With Regex.mp4 76MB
- 11. Regex And Text Manipulation/16. Introduction To Regular Expressions.mp4 75MB
- 13. Data Formats And IO/5. Creating Output The to_ Family Of Methods.mp4 74MB
- 4. Working With DataFrames/4. BONUS - Four More Ways To Build DataFrames.mp4 73MB
- 11. Regex And Text Manipulation/23. Solution.mp4 72MB
- 15. Appendix B - Going Local Installation And Setup/1. Installing Anaconda And Python - Windows.mp4 71MB
- 3. Series Methods And Handling/28. Transforming With update(), apply() And map().mp4 70MB
- 5. DataFrames In Depth/33. Element-wise Operations With applymap().mp4 69MB
- 5. DataFrames In Depth/4. More Approaches To Boolean Masking.mp4 68MB
- 5. DataFrames In Depth/31. Same-shape Transforms.mp4 67MB
- 4. Working With DataFrames/22. Part I Collecting The Units.mp4 67MB
- 11. Regex And Text Manipulation/14. BONUS Parsing Indicators With get_dummies().mp4 66MB
- 5. DataFrames In Depth/14. Sorting vs. Reordering.mp4 65MB
- 11. Regex And Text Manipulation/17. More Regex Concepts.mp4 65MB
- 12. Visualizing Data/9. Other Visualization Options.mp4 64MB
- 11. Regex And Text Manipulation/18. How To Approach Regex.mp4 64MB
- 12. Visualizing Data/8. Scatter Plots.mp4 63MB
- 4. Working With DataFrames/31. BONUS - Min, Max and Idx[MinMax], And Good Foods.mp4 63MB
- 12. Visualizing Data/3. The Preliminaries Of matplotlib.mp4 63MB
- 1. Introduction/7. NumPy.mp4 62MB
- 5. DataFrames In Depth/19. Identifying Dupes.mp4 61MB
- 6. Working With Multiple DataFrames/11. Solution.mp4 59MB
- 5. DataFrames In Depth/32. More Flexibility With apply().mp4 59MB
- 7. Going MultiDimensional/7. Indexing Ranges And Slices.mp4 59MB
- 7. Going MultiDimensional/20. BONUS Creating MultiLevel Columns Manually.mp4 59MB
- 6. Working With Multiple DataFrames/5. Enforcing Unique Indices.mp4 58MB
- 14. Appendix A - Rapid-Fire Python Fundamentals/25. Defining Functions.mp4 58MB
- 5. DataFrames In Depth/27. BONUS - Methods And Axes With fillna().mp4 57MB
- 4. Working With DataFrames/26. Part II Merging Units With Column Names.mp4 57MB
- 6. Working With Multiple DataFrames/16. One-to-One and One-to-Many Joins.mp4 57MB
- 13. Data Formats And IO/4. Reading Excel.mp4 56MB
- 6. Working With Multiple DataFrames/17. Many-to-Many Joins.mp4 56MB
- 3. Series Methods And Handling/27. Filtering filter(), where(), And mask().mp4 55MB
- 12. Visualizing Data/6. Pie Plots.mp4 55MB
- 12. Visualizing Data/12. Solution.mp4 54MB
- 12. Visualizing Data/4. Line Graphs.mp4 54MB
- 14. Appendix A - Rapid-Fire Python Fundamentals/13. Containers III Sets.mp4 53MB
- 10. Handling Date And Time/3. Parsing Dates From Text.mp4 53MB
- 3. Series Methods And Handling/2. Reading In Data With read_csv().mp4 53MB
- 6. Working With Multiple DataFrames/4. The Duplicated Index Issue.mp4 51MB
- 5. DataFrames In Depth/6. BONUS - XOR and Complement Binary Ops.mp4 50MB
- 4. Working With DataFrames/12. Changing The Index.mp4 50MB
- 12. Visualizing Data/5. Bar Charts.mp4 50MB
- 5. DataFrames In Depth/40. Adding Rows To DataFrames.mp4 50MB
- 4. Working With DataFrames/29. DataFrame Sorting.mp4 49MB
- 10. Handling Date And Time/19. Upsampling And Interpolation.mp4 49MB
- 5. DataFrames In Depth/38. View vs Copy.mp4 49MB
- 7. Going MultiDimensional/24. Solution.mp4 49MB
- 5. DataFrames In Depth/26. Dropping And Filling DataFrame NAs.mp4 49MB
- 3. Series Methods And Handling/32. Solution III - Z-scores.mp4 48MB
- 1. Introduction/4. Jupyter Notebooks.mp4 48MB
- 4. Working With DataFrames/14. DataFrame Extraction by Position.mp4 47MB
- 11. Regex And Text Manipulation/8. String Splitting And Concatenation.mp4 46MB
- 5. DataFrames In Depth/12. Fancy Indexing With lookup().mp4 46MB
- 6. Working With Multiple DataFrames/21. Solution.mp4 46MB
- 7. Going MultiDimensional/19. The Flipside unstack().mp4 46MB
- 4. Working With DataFrames/2. What Is A DataFrame.mp4 46MB
- 13. Data Formats And IO/10. Solution.mp4 46MB
- 12. Visualizing Data/7. Histograms.mp4 46MB
- 5. DataFrames In Depth/7. Combining Conditions.mp4 46MB
- 4. Working With DataFrames/18. Solution.mp4 45MB
- 5. DataFrames In Depth/13. Sorting By Index Or Column.mp4 45MB
- 7. Going MultiDimensional/11. Solution.mp4 45MB
- 4. Working With DataFrames/21. DataFrame replace() + A Glimpse At Regex.mp4 44MB
- 8. GroupBy And Aggregates/15. Fine-tuned Aggregates.mp4 44MB
- 5. DataFrames In Depth/36. Setting DataFrame Values.mp4 44MB
- 10. Handling Date And Time/21. BONUS Rolling Windows.mp4 43MB
- 4. Working With DataFrames/10. BONUS - How Are Random Numbers Generated.mp4 43MB
- 14. Appendix A - Rapid-Fire Python Fundamentals/5. Ints And Floats.mp4 43MB
- 5. DataFrames In Depth/29. Solution.mp4 42MB
- 4. Working With DataFrames/28. Filtering in 2D.mp4 42MB
- 4. Working With DataFrames/34. Solution.mp4 42MB
- 5. DataFrames In Depth/25. Null Values In DataFrames.mp4 42MB
- 6. Working With Multiple DataFrames/3. Concatenating DataFrames.mp4 42MB
- 9. Reshaping With Pivots/3. Pivoting Data.mp4 42MB
- 11. Regex And Text Manipulation/15. Text Replacement.mp4 42MB
- 14. Appendix A - Rapid-Fire Python Fundamentals/17. Controlling Flow if, else, And elif.mp4 42MB
- 8. GroupBy And Aggregates/19. BONUS - There's Also apply().mp4 41MB
- 6. Working With Multiple DataFrames/2. Introducing (Five) New Datasets.mp4 41MB
- 4. Working With DataFrames/9. BONUS - Sampling With Replacement Or Weights.mp4 40MB
- 10. Handling Date And Time/2. The Python datetime Module.mp4 40MB
- 3. Series Methods And Handling/22. Series Arithmetics And fill_value().mp4 40MB
- 11. Regex And Text Manipulation/9. More Split Parameters.mp4 40MB
- 4. Working With DataFrames/24. DataFrame dropna().mp4 40MB
- 5. DataFrames In Depth/10. Solution.mp4 40MB
- 5. DataFrames In Depth/11. 2d Indexing.mp4 40MB
- 5. DataFrames In Depth/37. The SettingWithCopy Warning.mp4 40MB
- 7. Going MultiDimensional/6. Indexing Hierarchical DataFrames.mp4 39MB
- 14. Appendix A - Rapid-Fire Python Fundamentals/3. Variables.mp4 39MB
- 8. GroupBy And Aggregates/18. GroupBy Transformations.mp4 39MB
- 10. Handling Date And Time/18. Resampling Timeseries.mp4 39MB
- 6. Working With Multiple DataFrames/9. Concat On Different Columns.mp4 38MB
- 10. Handling Date And Time/14. DateTimeIndex Attribute Accessors.mp4 38MB
- 6. Working With Multiple DataFrames/18. Merging By Index.mp4 38MB
- 5. DataFrames In Depth/5. Binary Operators With Booleans.mp4 38MB
- 7. Going MultiDimensional/17. More MultiIndex Methods.mp4 38MB
- 7. Going MultiDimensional/15. Removing MultiIndex Levels.mp4 38MB
- 2. Series At A Glance/19. BONUS Using Callables With .loc And .iloc.mp4 37MB
- 5. DataFrames In Depth/30. Calculating Aggregates With agg().mp4 37MB
- 11. Regex And Text Manipulation/13. Masking With String Methods.mp4 37MB
- 4. Working With DataFrames/36. Solution.mp4 37MB
- 3. Series Methods And Handling/6. Accessing And Counting NAs.mp4 37MB
- 9. Reshaping With Pivots/13. Solution.mp4 37MB
- 10. Handling Date And Time/20. What About asfreq().mp4 37MB
- 10. Handling Date And Time/15. Creating Date Ranges.mp4 37MB
- 8. GroupBy And Aggregates/16. Named Aggregations.mp4 36MB
- 5. DataFrames In Depth/39. Adding DataFrame Columns.mp4 36MB
- 14. Appendix A - Rapid-Fire Python Fundamentals/15. Dictionary Keys And Values.mp4 36MB
- 10. Handling Date And Time/16. Shifting Dates With pd.DateOffset.mp4 36MB
- 9. Reshaping With Pivots/7. BONUS The Problem With Average Percentage.mp4 36MB
- 4. Working With DataFrames/13. Extracting From DataFrames By Label.mp4 36MB
- 4. Working With DataFrames/27. Part III Removing Units From Values.mp4 36MB
- 4. Working With DataFrames/7. Some Cleanup Removing The Duplicated Index.mp4 36MB
- 7. Going MultiDimensional/16. MultiIndex sort_index().mp4 36MB
- 6. Working With Multiple DataFrames/12. The merge() Method.mp4 35MB
- 4. Working With DataFrames/32. DataFrame nlargest() And nsmallest().mp4 35MB
- 10. Handling Date And Time/6. Performant Datetimes With Numpy.mp4 35MB
- 4. Working With DataFrames/30. Using Series between() With DataFrames.mp4 35MB
- 7. Going MultiDimensional/12. The Anatomy Of A MultiIndex Object.mp4 35MB
- 9. Reshaping With Pivots/5. What About Aggregates.mp4 34MB
- 14. Appendix A - Rapid-Fire Python Fundamentals/28. Importing Modules.mp4 34MB
- 3. Series Methods And Handling/13. Descriptive Statistics.mp4 34MB
- 9. Reshaping With Pivots/6. The pivot_table().mp4 34MB
- 7. Going MultiDimensional/13. Adding Another Level.mp4 34MB
- 5. DataFrames In Depth/24. BONUS - A Sophisticated Alternative.mp4 33MB
- 2. Series At A Glance/7. Index And RangeIndex.mp4 33MB
- 7. Going MultiDimensional/9. Cross Sections With xs().mp4 33MB
- 14. Appendix A - Rapid-Fire Python Fundamentals/11. List Methods And Functions.mp4 33MB
- 1. Introduction/6. Hello, Python.mp4 33MB
- 12. Visualizing Data/10. BONUS Data Ink And Chartjunk.mp4 32MB
- 6. Working With Multiple DataFrames/13. The left_on And right_on Params.mp4 32MB
- 14. Appendix A - Rapid-Fire Python Fundamentals/7. Strings.mp4 32MB
- 5. DataFrames In Depth/43. Solution.mp4 32MB
- 14. Appendix A - Rapid-Fire Python Fundamentals/24. List Comprehensions.mp4 32MB
- 3. Series Methods And Handling/15. mode() And value_counts().mp4 32MB
- 11. Regex And Text Manipulation/7. Strips And Whitespace.mp4 32MB
- 13. Data Formats And IO/6. BONUS Introduction To Pickling.mp4 32MB
- 15. Appendix B - Going Local Installation And Setup/3. Installing Anaconda And Python - Linux.mp4 31MB
- 7. Going MultiDimensional/18. Reshaping With stack().mp4 31MB
- 2. Series At A Glance/20. Selecting With .get().mp4 31MB
- 14. Appendix A - Rapid-Fire Python Fundamentals/26. Function Arguments Positional vs Keyword.mp4 30MB
- 5. DataFrames In Depth/20. Removing Duplicates.mp4 30MB
- 14. Appendix A - Rapid-Fire Python Fundamentals/9. Containers I Lists.mp4 29MB
- 2. Series At A Glance/17. Boolean Masks And The .loc Indexer.mp4 29MB
- 10. Handling Date And Time/8. Our Dataset Brent Prices.mp4 29MB
- 4. Working With DataFrames/25. BONUS - dropna() With Subset.mp4 29MB
- 14. Appendix A - Rapid-Fire Python Fundamentals/21. While Loops.mp4 29MB
- 2. Series At A Glance/13. Extracting By Index Position.mp4 29MB
- 8. GroupBy And Aggregates/3. Simple Aggregations Review.mp4 29MB
- 11. Regex And Text Manipulation/3. String Methods In Python.mp4 29MB
- 6. Working With Multiple DataFrames/6. BONUS - Creating Multiple Indices With concat().mp4 28MB
- 10. Handling Date And Time/17. BONUS Timedeltas And Absolute Time.mp4 28MB
- 2. Series At A Glance/21. Selection Recap.mp4 28MB
- 13. Data Formats And IO/8. The Many Other Formats.mp4 28MB
- 9. Reshaping With Pivots/4. Undoing Pivots.mp4 28MB
- 7. Going MultiDimensional/22. BONUS - What About Panels.mp4 28MB
- 7. Going MultiDimensional/5. MultiIndex From read_csv().mp4 28MB
- 8. GroupBy And Aggregates/11. Solution.mp4 28MB
- 4. Working With DataFrames/23. The rename() Method.mp4 28MB
- 14. Appendix A - Rapid-Fire Python Fundamentals/10. Lists vs. Strings.mp4 28MB
- 14. Appendix A - Rapid-Fire Python Fundamentals/4. Arithmetic And Augmented Assignment Operators.mp4 27MB
- 4. Working With DataFrames/6. Reading In Nutrition Data.mp4 27MB
- 6. Working With Multiple DataFrames/14. Inner vs Outer Joins.mp4 27MB
- 6. Working With Multiple DataFrames/7. Column Axis Concatenation.mp4 27MB
- 2. Series At A Glance/14. Accessing Elements By Label.mp4 27MB
- 7. Going MultiDimensional/3. Index And RangeIndex.mp4 27MB
- 9. Reshaping With Pivots/2. New Data New York City SAT Scores.mp4 27MB
- 10. Handling Date And Time/11. Indexing Dates.mp4 27MB
- 8. GroupBy And Aggregates/14. MultiIndex Grouping.mp4 27MB
- 1. Introduction/5. Cloud vs Local.mp4 27MB
- 5. DataFrames In Depth/35. Solution.mp4 26MB
- 7. Going MultiDimensional/1. Section Intro.mp4 26MB
- 4. Working With DataFrames/15. Single Value Access With .at And .iat.mp4 26MB
- 8. GroupBy And Aggregates/17. The filter() Method.mp4 26MB
- 5. DataFrames In Depth/18. Solution.mp4 26MB
- 11. Regex And Text Manipulation/6. Finding Characters And Words.mp4 26MB
- 14. Appendix A - Rapid-Fire Python Fundamentals/8. Methods.mp4 25MB
- 4. Working With DataFrames/20. The astype() Method.mp4 25MB
- 4. Working With DataFrames/16. BONUS - The get_loc() Method.mp4 25MB
- 9. Reshaping With Pivots/9. Adding Margins.mp4 25MB
- 10. Handling Date And Time/9. Date Parsing And DatetimeIndex.mp4 25MB
- 8. GroupBy And Aggregates/21. Solution.mp4 25MB
- 8. GroupBy And Aggregates/4. Conditional Aggregates.mp4 25MB
- 7. Going MultiDimensional/14. Shuffling Levels.mp4 24MB
- 11. Regex And Text Manipulation/12. Slicing Substrings.mp4 24MB
- 10. Handling Date And Time/7. The Pandas Timestamp.mp4 24MB
- 10. Handling Date And Time/4. Even Better dateutil.mp4 24MB
- 9. Reshaping With Pivots/1. Section Intro.mp4 24MB
- 14. Appendix A - Rapid-Fire Python Fundamentals/20. The range() Immutable Sequence.mp4 24MB
- 8. GroupBy And Aggregates/13. Handpicking Subgroups.mp4 24MB
- 11. Regex And Text Manipulation/2. Our Data Boston Marathon Runners.mp4 24MB
- 2. Series At A Glance/23. Solution.mp4 23MB
- 5. DataFrames In Depth/3. Quick Review Indexing With Boolean Masks.mp4 23MB
- 4. Working With DataFrames/11. DataFrame Axes.mp4 23MB
- 3. Series Methods And Handling/3. Series Sizing With .size, .shape, And len().mp4 23MB
- 14. Appendix A - Rapid-Fire Python Fundamentals/27. Lambdas.mp4 23MB
- 2. Series At A Glance/12. The head() And tail() Methods.mp4 23MB
- 13. Data Formats And IO/7. Pickles In Pandas.mp4 23MB
- 10. Handling Date And Time/23. Solution.mp4 23MB
- 2. Series At A Glance/10. Solution.mp4 23MB
- 6. Working With Multiple DataFrames/19. The join() Method.mp4 23MB
- 14. Appendix A - Rapid-Fire Python Fundamentals/14. Containers IV Dictionaries.mp4 23MB
- 4. Working With DataFrames/8. The sample() Method.mp4 23MB
- 8. GroupBy And Aggregates/5. The Split-Apply-Combine Pattern.mp4 23MB
- 4. Working With DataFrames/3. Creating A DataFrame.mp4 22MB
- 10. Handling Date And Time/5. From Datetime To String.mp4 22MB
- 10. Handling Date And Time/1. Section Intro.mp4 22MB
- 7. Going MultiDimensional/2. Introducing New Data.mp4 22MB
- 3. Series Methods And Handling/16. idxmax() And idxmin().mp4 22MB
- 11. Regex And Text Manipulation/11. Solution.mp4 22MB
- 14. Appendix A - Rapid-Fire Python Fundamentals/6. Booleans And Comparison Operators.mp4 22MB
- 5. DataFrames In Depth/41. BONUS - How Are DataFrames Stored In Memory.mp4 22MB
- 8. GroupBy And Aggregates/6. The groupby() Method.mp4 22MB
- 3. Series Methods And Handling/12. Dropping And Filling NAs.mp4 22MB
- 3. Series Methods And Handling/7. BONUS Another Approach.mp4 21MB
- 5. DataFrames In Depth/1. Section Intro.mp4 21MB
- 8. GroupBy And Aggregates/12. Iterating Through Groups.mp4 21MB
- 8. GroupBy And Aggregates/9. BONUS - Series groupby().mp4 21MB
- 1. Introduction/3. Anaconda.mp4 21MB
- 14. Appendix A - Rapid-Fire Python Fundamentals/19. For Loops.mp4 21MB
- 8. GroupBy And Aggregates/8. Customizing Index To Group Mappings.mp4 20MB
- 3. Series Methods And Handling/31. Solution II - Mean, Median, And Standard Deviation.mp4 20MB
- 2. Series At A Glance/4. What’s In The Data.mp4 20MB
- 6. Working With Multiple DataFrames/15. Left vs Right Joins.mp4 20MB
- 7. Going MultiDimensional/4. Creating A MultiIndex.mp4 20MB
- 14. Appendix A - Rapid-Fire Python Fundamentals/12. Containers II Tuples.mp4 20MB
- 5. DataFrames In Depth/8. Conditions As Variables.mp4 20MB
- 8. GroupBy And Aggregates/7. The DataFrameGroupBy Object.mp4 20MB
- 5. DataFrames In Depth/21. Removing DataFrame Rows.mp4 20MB
- 13. Data Formats And IO/2. Reading JSON.mp4 20MB
- 3. Series Methods And Handling/17. Sorting With sort_values().mp4 20MB
- 14. Appendix A - Rapid-Fire Python Fundamentals/16. Membership Operators.mp4 19MB
- 14. Appendix A - Rapid-Fire Python Fundamentals/22. Break And Continue.mp4 19MB
- 2. Series At A Glance/8. Series And Index Names.mp4 19MB
- 5. DataFrames In Depth/23. BONUS - Another Way pop().mp4 19MB
- 9. Reshaping With Pivots/10. MultiIndex Pivot Tables.mp4 19MB
- 4. Working With DataFrames/5. The info() Method.mp4 19MB
- 4. Working With DataFrames/19. More Cleanup Going Numeric.mp4 19MB
- 7. Going MultiDimensional/21. An Easier Way transpose().mp4 19MB
- 11. Regex And Text Manipulation/4. Vectorized String Operations In Pandas.mp4 18MB
- 9. Reshaping With Pivots/11. Applying Multiple Functions.mp4 18MB
- 11. Regex And Text Manipulation/20. BONUS What's The Point Of re.compile().mp4 18MB
- 5. DataFrames In Depth/2. Introducing A New Dataset.mp4 18MB
- 3. Series Methods And Handling/24. Cumulative Operations.mp4 18MB
- 1. Introduction/2. Pandas Is Not Single.mp4 18MB
- 3. Series Methods And Handling/4. Unique Values And Series Monotonicity.mp4 18MB
- 10. Handling Date And Time/10. A Cool Shorcut read_csv() With parse_dates.mp4 18MB
- 3. Series Methods And Handling/23. BONUS Calculating Variance And Standard Deviation.mp4 17MB
- 14. Appendix A - Rapid-Fire Python Fundamentals/23. Zipping Iterables.mp4 17MB
- 15. Appendix B - Going Local Installation And Setup/2. Installing Anaconda And Python - Mac.mp4 17MB
- 10. Handling Date And Time/13. Solution.mp4 17MB
- 8. GroupBy And Aggregates/1. Section Intro.mp4 17MB
- 5. DataFrames In Depth/16. 15. BONUS - Please Avoid Sorting Like This.mp4 17MB
- 7. Going MultiDimensional/8. BONUS - Use With pd.IndexSlice!.mp4 17MB
- 11. Regex And Text Manipulation/1. Section Intro.mp4 17MB
- 2. Series At A Glance/15. BONUS The add_prefix() And add_suffix() Methods.mp4 16MB
- 5. DataFrames In Depth/22. BONUS - Removing Columns.mp4 16MB
- 3. Series Methods And Handling/26. Series Iteration.mp4 16MB
- 14. Appendix A - Rapid-Fire Python Fundamentals/18. Truth Value Of Non-booleans.mp4 16MB
- 3. Series Methods And Handling/19. Sorting With sort_index().mp4 15MB
- 8. GroupBy And Aggregates/2. New Data Game Sales.mp4 15MB
- 3. Series Methods And Handling/30. Solution I - Reading Data.mp4 15MB
- 6. Working With Multiple DataFrames/8. The append() Method A Special Case Of concat().mp4 14MB
- 1. Introduction/1. Course Structure.mp4 14MB
- 11. Regex And Text Manipulation/5. Case Operations.mp4 14MB
- 3. Series Methods And Handling/11. Solution.mp4 13MB
- 2. Series At A Glance/16. Using Dot Notation.mp4 13MB
- 12. Visualizing Data/2. The Art Of Data Visualization.mp4 13MB
- 5. DataFrames In Depth/15. BONUS - Another Way.mp4 13MB
- 3. Series Methods And Handling/1. Section Intro.mp4 13MB
- 3. Series Methods And Handling/25. Pairwise Differences With diff().mp4 13MB
- 2. Series At A Glance/2. What Is A Series.mp4 13MB
- 9. Reshaping With Pivots/8. Replicating Pivot Tables With GroupBy.mp4 13MB
- 3. Series Methods And Handling/18. nlargest() And nsmallest().mp4 12MB
- 13. Data Formats And IO/9. Skill Challenge.mp4 12MB
- 3. Series Methods And Handling/9. BONUS Booleans Are Literally Numbers In Python.mp4 12MB
- 2. Series At A Glance/18. Extracting By Position With .iloc.mp4 12MB
- 2. Series At A Glance/11. Another Solution.mp4 11MB
- 3. Series Methods And Handling/8. The Other Side notnull() And notna().mp4 11MB
- 4. Working With DataFrames/1. Section Intro.mp4 11MB
- 12. Visualizing Data/1. Section Intro.mp4 10MB
- 3. Series Methods And Handling/29. Skill Challenge.mp4 10MB
- 14. Appendix A - Rapid-Fire Python Fundamentals/2. Data Types.mp4 10MB
- 2. Series At A Glance/6. BONUS What Is dtype('o'), Really.mp4 10MB
- 3. Series Methods And Handling/21. Solution.mp4 10MB
- 3. Series Methods And Handling/14. The describe() Method.mp4 10MB
- 14. Appendix A - Rapid-Fire Python Fundamentals/1. Section Intro.mp4 9MB
- 5. DataFrames In Depth/34. Skill Challenge.mp4 9MB
- 2. Series At A Glance/3. Parameters vs Arguments.mp4 8MB
- 7. Going MultiDimensional/23. Skill Challenge.mp4 8MB
- 6. Working With Multiple DataFrames/1. Section Intro.mp4 8MB
- 2. Series At A Glance/9. Skill Challenge.mp4 8MB
- 12. Visualizing Data/11. Skill Challenge.mp4 8MB
- 2. Series At A Glance/1. Section Intro.mp4 7MB
- 4. Working With DataFrames/35. Another Skill Challenge.mp4 7MB
- 2. Series At A Glance/22. Skill Challenge.mp4 6MB
- 2. Series At A Glance/5. The .dtype Attribute.mp4 6MB
- 3. Series Methods And Handling/5. The count() Method.mp4 6MB
- 6. Working With Multiple DataFrames/10. Skill Challenge.mp4 6MB
- 9. Reshaping With Pivots/12. Skill Challenge.mp4 5MB
- 11. Regex And Text Manipulation/22. Skill Challenge.mp4 5MB
- 5. DataFrames In Depth/28. Skill Challenge.mp4 5MB
- 13. Data Formats And IO/1. Section Intro.mp4 5MB
- 5. DataFrames In Depth/42. Skill Challenge.mp4 5MB
- 10. Handling Date And Time/22. Skill Challenge.mp4 5MB
- 5. DataFrames In Depth/17. Skill Challenge.mp4 4MB
- Sources/nutrition.csv 4MB
- 4. Working With DataFrames/33. Skill Challenge.mp4 4MB
- 4. Working With DataFrames/17. Skill Challenge.mp4 4MB
- 8. GroupBy And Aggregates/20. Skill Challenge.mp4 4MB
- 3. Series Methods And Handling/10. Skill Challenge.mp4 4MB
- 5. DataFrames In Depth/9. Skill Challenge.mp4 4MB
- 6. Working With Multiple DataFrames/20. Skill Challenge.mp4 4MB
- 10. Handling Date And Time/12. Skill Challenge.mp4 4MB
- 7. Going MultiDimensional/10. Skill Challenge.mp4 4MB
- 11. Regex And Text Manipulation/10. Skill Challenge.mp4 3MB
- 8. GroupBy And Aggregates/10. Skill Challenge.mp4 3MB
- 3. Series Methods And Handling/20. Skill Challenge.mp4 3MB
- Sources/Visualizing_Data.ipynb.zip 501KB
- Sources/tech_giants (1).csv 467KB
- Sources/tech_giants.csv 467KB
- Sources/MemoryLayout.pdf 246KB
- Sources/games_sales (1).csv 237KB
- Sources/games_sales (2).csv 237KB
- Sources/games_sales.csv 237KB
- Sources/Vectorization.pdf 115KB
- Sources/SplitApplyCombine.pdf 115KB
- Sources/SelectionRecap.pdf 111KB
- Sources/WhatIsDtype.pdf 111KB
- Sources/MultiIndexInternals.pdf 111KB
- Sources/Working_With_DataFrames.zip 106KB
- Sources/Handling_Time_And_Date.ipynb.zip 105KB
- Sources/BrentOilPrices (1).csv 79KB
- Sources/BrentOilPrices.csv 79KB
- Sources/WhatIsASeries.pdf 75KB
- Sources/scores (1).csv 75KB
- Sources/scores.csv 75KB
- Sources/SelectionTerminology.pdf 67KB
- Sources/3KeyConcepts.pdf 63KB
- Sources/ConcatVsMerge.pdf 63KB
- Sources/WhatIsCSV.pdf 63KB
- Sources/TwosComplement.pdf 60KB
- Sources/DataFrames_In_Depth.zip 59KB
- Sources/DropnaWithSubset.pdf 59KB
- Sources/2017BostonMarathonTop1000 (1).csv 58KB
- Sources/2017BostonMarathonTop1000.csv 58KB
- Sources/DroppingAndFillingNA.pdf 57KB
- Sources/ViewVsCopy.pdf 53KB
- Sources/Lookup.pdf 50KB
- Sources/AppendVsConcat.pdf 49KB
- Sources/Transforms.pdf 47KB
- Sources/SortValueOrIndex.pdf 44KB
- Sources/BooleanMasks.pdf 44KB
- Sources/InnerVsOuter.pdf 44KB
- Sources/SeriesAtGlance.pdf 43KB
- Sources/Diff.pdf 42KB
- Sources/SizeAndShape.pdf 42KB
- Sources/SeriesAccounting.pdf 42KB
- Sources/Going_MultiDimensional.zip 42KB
- Sources/SeqVsVectorizedOperations.pdf 41KB
- Sources/LeftVsRight.pdf 41KB
- Sources/IdxminIdxmax.pdf 40KB
- Sources/Variance.pdf 38KB
- Sources/RangeVSInt64Index.pdf 38KB
- Sources/BoolsAsInts.pdf 37KB
- Sources/ValueCounts.pdf 36KB
- Sources/JoinCardinalities.pdf 35KB
- Sources/soccer.csv 34KB
- Sources/OurProcess.pdf 33KB
- Sources/Median.pdf 32KB
- Sources/MethodsVAttribtues.pdf 32KB
- Sources/Series_Methods_And_Handling.zip 32KB
- Sources/AtAndIat.pdf 31KB
- Sources/Regex_And_Text_Manipulation.ipynb.zip 30KB
- Sources/IndexingWithCallables.pdf 29KB
- Sources/MoreWaysToBuildDataframes.pdf 29KB
- Sources/Comparators.pdf 29KB
- Sources/Working_With_Multiple_DataFrames.zip 27KB
- Sources/ViewVsCopyHowDoWeTell.pdf 27KB
- Sources/Appendix_A_Rapid_Fire_Python_Fundamentals.ipynb.zip 26KB
- Sources/BinaryOperators.pdf 24KB
- Sources/Duplicates.pdf 24KB
- Sources/Data_Formats_And_I_O.ipynb.zip 24KB
- Sources/mid_career_salaries.csv 23KB
- Sources/GroupBy_And_Aggregates.ipynb.zip 22KB
- Sources/WhatsInTheData.pdf 19KB
- 11. Regex And Text Manipulation/19. Is This A Valid Email.srt 19KB
- 13. Data Formats And IO/5. Creating Output The to_ Family Of Methods.srt 19KB
- Sources/ArgsVParams.pdf 18KB
- 5. DataFrames In Depth/31. Same-shape Transforms.srt 18KB
- 11. Regex And Text Manipulation/21. Pandas str contains(), split() And replace() With Regex.srt 17KB
- 4. Working With DataFrames/4. BONUS - Four More Ways To Build DataFrames.srt 17KB
- Sources/Reshaping_With_Pivots.ipynb.zip 17KB
- 13. Data Formats And IO/3. Reading HTML.srt 16KB
- 5. DataFrames In Depth/32. More Flexibility With apply().srt 16KB
- 11. Regex And Text Manipulation/16. Introduction To Regular Expressions.srt 16KB
- 5. DataFrames In Depth/33. Element-wise Operations With applymap().srt 16KB
- 4. Working With DataFrames/22. Part I Collecting The Units.srt 15KB
- 7. Going MultiDimensional/7. Indexing Ranges And Slices.srt 15KB
- 11. Regex And Text Manipulation/23. Solution.srt 15KB
- 3. Series Methods And Handling/28. Transforming With update(), apply() And map().srt 15KB
- 5. DataFrames In Depth/14. Sorting vs. Reordering.srt 14KB
- 12. Visualizing Data/3. The Preliminaries Of matplotlib.srt 14KB
- 1. Introduction/7. NumPy.srt 14KB
- 5. DataFrames In Depth/6. BONUS - XOR and Complement Binary Ops.srt 14KB
- 1. Introduction/4. Jupyter Notebooks.srt 14KB
- 14. Appendix A - Rapid-Fire Python Fundamentals/25. Defining Functions.srt 14KB
- Sources/Series_At_Glance.zip 14KB
- 12. Visualizing Data/4. Line Graphs.srt 14KB
- 3. Series Methods And Handling/27. Filtering filter(), where(), And mask().srt 13KB
- 11. Regex And Text Manipulation/18. How To Approach Regex.srt 13KB
- 10. Handling Date And Time/21. BONUS Rolling Windows.srt 13KB
- 6. Working With Multiple DataFrames/11. Solution.srt 13KB
- 4. Working With DataFrames/26. Part II Merging Units With Column Names.srt 13KB
- 5. DataFrames In Depth/19. Identifying Dupes.srt 13KB
- 4. Working With DataFrames/21. DataFrame replace() + A Glimpse At Regex.srt 13KB
- 7. Going MultiDimensional/20. BONUS Creating MultiLevel Columns Manually.srt 13KB
- 11. Regex And Text Manipulation/14. BONUS Parsing Indicators With get_dummies().srt 13KB
- 10. Handling Date And Time/2. The Python datetime Module.srt 13KB
- 11. Regex And Text Manipulation/17. More Regex Concepts.srt 12KB
- 12. Visualizing Data/8. Scatter Plots.srt 12KB
- 14. Appendix A - Rapid-Fire Python Fundamentals/13. Containers III Sets.srt 12KB
- 5. DataFrames In Depth/5. Binary Operators With Booleans.srt 12KB
- 4. Working With DataFrames/2. What Is A DataFrame.srt 12KB
- 12. Visualizing Data/6. Pie Plots.srt 12KB
- 4. Working With DataFrames/24. DataFrame dropna().srt 12KB
- 12. Visualizing Data/5. Bar Charts.srt 12KB
- Sources/state.csv 12KB
- 10. Handling Date And Time/3. Parsing Dates From Text.srt 12KB
- 5. DataFrames In Depth/4. More Approaches To Boolean Masking.srt 12KB
- 12. Visualizing Data/7. Histograms.srt 11KB
- 14. Appendix A - Rapid-Fire Python Fundamentals/5. Ints And Floats.srt 11KB
- 5. DataFrames In Depth/11. 2d Indexing.srt 11KB
- 5. DataFrames In Depth/30. Calculating Aggregates With agg().srt 11KB
- 5. DataFrames In Depth/40. Adding Rows To DataFrames.srt 11KB
- 14. Appendix A - Rapid-Fire Python Fundamentals/3. Variables.srt 11KB
- 10. Handling Date And Time/19. Upsampling And Interpolation.srt 11KB
- Sources/regions.csv 11KB
- 10. Handling Date And Time/20. What About asfreq().srt 11KB
- 5. DataFrames In Depth/27. BONUS - Methods And Axes With fillna().srt 11KB
- 11. Regex And Text Manipulation/8. String Splitting And Concatenation.srt 11KB
- 14. Appendix A - Rapid-Fire Python Fundamentals/17. Controlling Flow if, else, And elif.srt 11KB
- 3. Series Methods And Handling/6. Accessing And Counting NAs.srt 11KB
- 5. DataFrames In Depth/38. View vs Copy.srt 11KB
- 2. Series At A Glance/19. BONUS Using Callables With .loc And .iloc.srt 11KB
- 14. Appendix A - Rapid-Fire Python Fundamentals/15. Dictionary Keys And Values.srt 11KB
- 4. Working With DataFrames/31. BONUS - Min, Max and Idx[MinMax], And Good Foods.srt 10KB
- 14. Appendix A - Rapid-Fire Python Fundamentals/11. List Methods And Functions.srt 10KB
- 4. Working With DataFrames/28. Filtering in 2D.srt 10KB
- 7. Going MultiDimensional/12. The Anatomy Of A MultiIndex Object.srt 10KB
- 8. GroupBy And Aggregates/15. Fine-tuned Aggregates.srt 10KB
- 6. Working With Multiple DataFrames/16. One-to-One and One-to-Many Joins.srt 10KB
- 10. Handling Date And Time/6. Performant Datetimes With Numpy.srt 10KB
- 3. Series Methods And Handling/2. Reading In Data With read_csv().srt 10KB
- 14. Appendix A - Rapid-Fire Python Fundamentals/7. Strings.srt 10KB
- 7. Going MultiDimensional/6. Indexing Hierarchical DataFrames.srt 10KB
- 2. Series At A Glance/17. Boolean Masks And The .loc Indexer.srt 10KB
- 7. Going MultiDimensional/11. Solution.srt 10KB
- 12. Visualizing Data/9. Other Visualization Options.srt 10KB
- 7. Going MultiDimensional/17. More MultiIndex Methods.srt 10KB
- 7. Going MultiDimensional/24. Solution.srt 10KB
- 5. DataFrames In Depth/39. Adding DataFrame Columns.srt 10KB
- 13. Data Formats And IO/4. Reading Excel.srt 10KB
- 14. Appendix A - Rapid-Fire Python Fundamentals/24. List Comprehensions.srt 10KB
- 11. Regex And Text Manipulation/9. More Split Parameters.srt 10KB
- 12. Visualizing Data/12. Solution.srt 10KB
- 5. DataFrames In Depth/12. Fancy Indexing With lookup().srt 10KB
- 4. Working With DataFrames/18. Solution.srt 10KB
- 4. Working With DataFrames/14. DataFrame Extraction by Position.srt 10KB
- 3. Series Methods And Handling/32. Solution III - Z-scores.srt 10KB
- Sources/folks.xlsx 9KB
- 10. Handling Date And Time/18. Resampling Timeseries.srt 9KB
- 8. GroupBy And Aggregates/18. GroupBy Transformations.srt 9KB
- 6. Working With Multiple DataFrames/17. Many-to-Many Joins.srt 9KB
- 3. Series Methods And Handling/13. Descriptive Statistics.srt 9KB
- 10. Handling Date And Time/14. DateTimeIndex Attribute Accessors.srt 9KB
- 3. Series Methods And Handling/22. Series Arithmetics And fill_value().srt 9KB
- 11. Regex And Text Manipulation/15. Text Replacement.srt 9KB
- 6. Working With Multiple DataFrames/5. Enforcing Unique Indices.srt 9KB
- 4. Working With DataFrames/25. BONUS - dropna() With Subset.srt 9KB
- 4. Working With DataFrames/9. BONUS - Sampling With Replacement Or Weights.srt 9KB
- 14. Appendix A - Rapid-Fire Python Fundamentals/26. Function Arguments Positional vs Keyword.srt 9KB
- 5. DataFrames In Depth/37. The SettingWithCopy Warning.srt 9KB
- 4. Working With DataFrames/23. The rename() Method.srt 9KB
- 6. Working With Multiple DataFrames/3. Concatenating DataFrames.srt 9KB
- 13. Data Formats And IO/10. Solution.srt 9KB
- 4. Working With DataFrames/29. DataFrame Sorting.srt 9KB
- 6. Working With Multiple DataFrames/4. The Duplicated Index Issue.srt 9KB
- 4. Working With DataFrames/12. Changing The Index.srt 9KB
- 11. Regex And Text Manipulation/3. String Methods In Python.srt 9KB
- 2. Series At A Glance/13. Extracting By Index Position.srt 9KB
- 14. Appendix A - Rapid-Fire Python Fundamentals/10. Lists vs. Strings.srt 9KB
- 9. Reshaping With Pivots/7. BONUS The Problem With Average Percentage.srt 9KB
- 14. Appendix A - Rapid-Fire Python Fundamentals/4. Arithmetic And Augmented Assignment Operators.srt 9KB
- 5. DataFrames In Depth/26. Dropping And Filling DataFrame NAs.srt 9KB
- 8. GroupBy And Aggregates/19. BONUS - There's Also apply().srt 9KB
- 2. Series At A Glance/7. Index And RangeIndex.srt 8KB
- 9. Reshaping With Pivots/3. Pivoting Data.srt 8KB
- 14. Appendix A - Rapid-Fire Python Fundamentals/8. Methods.srt 8KB
- 5. DataFrames In Depth/7. Combining Conditions.srt 8KB
- 6. Working With Multiple DataFrames/21. Solution.srt 8KB
- 10. Handling Date And Time/16. Shifting Dates With pd.DateOffset.srt 8KB
- 11. Regex And Text Manipulation/7. Strips And Whitespace.srt 8KB
- 11. Regex And Text Manipulation/13. Masking With String Methods.srt 8KB
- 5. DataFrames In Depth/25. Null Values In DataFrames.srt 8KB
- 3. Series Methods And Handling/15. mode() And value_counts().srt 8KB
- 4. Working With DataFrames/13. Extracting From DataFrames By Label.srt 8KB
- 13. Data Formats And IO/6. BONUS Introduction To Pickling.srt 8KB
- 5. DataFrames In Depth/29. Solution.srt 8KB
- 2. Series At A Glance/14. Accessing Elements By Label.srt 8KB
- 8. GroupBy And Aggregates/16. Named Aggregations.srt 8KB
- 14. Appendix A - Rapid-Fire Python Fundamentals/21. While Loops.srt 8KB
- 14. Appendix A - Rapid-Fire Python Fundamentals/9. Containers I Lists.srt 8KB
- 5. DataFrames In Depth/36. Setting DataFrame Values.srt 8KB
- 7. Going MultiDimensional/19. The Flipside unstack().srt 8KB
- 11. Regex And Text Manipulation/6. Finding Characters And Words.srt 8KB
- 15. Appendix B - Going Local Installation And Setup/1. Installing Anaconda And Python - Windows.srt 8KB
- 5. DataFrames In Depth/13. Sorting By Index Or Column.srt 8KB
- 7. Going MultiDimensional/15. Removing MultiIndex Levels.srt 8KB
- 7. Going MultiDimensional/16. MultiIndex sort_index().srt 8KB
- 5. DataFrames In Depth/10. Solution.srt 8KB
- 4. Working With DataFrames/16. BONUS - The get_loc() Method.srt 7KB
- 4. Working With DataFrames/36. Solution.srt 7KB
- 4. Working With DataFrames/27. Part III Removing Units From Values.srt 7KB
- 4. Working With DataFrames/20. The astype() Method.srt 7KB
- 10. Handling Date And Time/17. BONUS Timedeltas And Absolute Time.srt 7KB
- 14. Appendix A - Rapid-Fire Python Fundamentals/28. Importing Modules.srt 7KB
- 4. Working With DataFrames/32. DataFrame nlargest() And nsmallest().srt 7KB
- 5. DataFrames In Depth/43. Solution.srt 7KB
- 7. Going MultiDimensional/18. Reshaping With stack().srt 7KB
- 1. Introduction/5. Cloud vs Local.srt 7KB
- 11. Regex And Text Manipulation/12. Slicing Substrings.srt 7KB
- 9. Reshaping With Pivots/6. The pivot_table().srt 7KB
- 4. Working With DataFrames/30. Using Series between() With DataFrames.srt 7KB
- 14. Appendix A - Rapid-Fire Python Fundamentals/27. Lambdas.srt 7KB
- 7. Going MultiDimensional/9. Cross Sections With xs().srt 7KB
- 10. Handling Date And Time/15. Creating Date Ranges.srt 7KB
- 7. Going MultiDimensional/13. Adding Another Level.srt 7KB
- 2. Series At A Glance/4. What’s In The Data.srt 7KB
- 6. Working With Multiple DataFrames/12. The merge() Method.srt 7KB
- 14. Appendix A - Rapid-Fire Python Fundamentals/19. For Loops.srt 7KB
- 10. Handling Date And Time/23. Solution.srt 7KB
- 4. Working With DataFrames/10. BONUS - How Are Random Numbers Generated.srt 7KB
- 14. Appendix A - Rapid-Fire Python Fundamentals/14. Containers IV Dictionaries.srt 7KB
- 9. Reshaping With Pivots/5. What About Aggregates.srt 7KB
- 8. GroupBy And Aggregates/14. MultiIndex Grouping.srt 7KB
- 5. DataFrames In Depth/20. Removing Duplicates.srt 7KB
- 8. GroupBy And Aggregates/17. The filter() Method.srt 7KB
- 6. Working With Multiple DataFrames/2. Introducing (Five) New Datasets.srt 7KB
- 9. Reshaping With Pivots/4. Undoing Pivots.srt 7KB
- 2. Series At A Glance/21. Selection Recap.srt 7KB
- 4. Working With DataFrames/34. Solution.srt 7KB
- 4. Working With DataFrames/7. Some Cleanup Removing The Duplicated Index.srt 7KB
- 2. Series At A Glance/23. Solution.srt 7KB
- 3. Series Methods And Handling/16. idxmax() And idxmin().srt 6KB
- 9. Reshaping With Pivots/13. Solution.srt 6KB
- 14. Appendix A - Rapid-Fire Python Fundamentals/20. The range() Immutable Sequence.srt 6KB
- 8. GroupBy And Aggregates/4. Conditional Aggregates.srt 6KB
- 10. Handling Date And Time/9. Date Parsing And DatetimeIndex.srt 6KB
- 6. Working With Multiple DataFrames/14. Inner vs Outer Joins.srt 6KB
- 14. Appendix A - Rapid-Fire Python Fundamentals/6. Booleans And Comparison Operators.srt 6KB
- 8. GroupBy And Aggregates/11. Solution.srt 6KB
- 8. GroupBy And Aggregates/3. Simple Aggregations Review.srt 6KB
- 2. Series At A Glance/8. Series And Index Names.srt 6KB
- 6. Working With Multiple DataFrames/18. Merging By Index.srt 6KB
- 8. GroupBy And Aggregates/21. Solution.srt 6KB
- 2. Series At A Glance/12. The head() And tail() Methods.srt 6KB
- 3. Series Methods And Handling/4. Unique Values And Series Monotonicity.srt 6KB
- 10. Handling Date And Time/7. The Pandas Timestamp.srt 6KB
- 5. DataFrames In Depth/35. Solution.srt 6KB
- 7. Going MultiDimensional/2. Introducing New Data.srt 6KB
- 13. Data Formats And IO/7. Pickles In Pandas.srt 6KB
- 7. Going MultiDimensional/14. Shuffling Levels.srt 6KB
- 10. Handling Date And Time/5. From Datetime To String.srt 6KB
- 5. DataFrames In Depth/24. BONUS - A Sophisticated Alternative.srt 6KB
- 6. Working With Multiple DataFrames/9. Concat On Different Columns.srt 6KB
- 4. Working With DataFrames/15. Single Value Access With .at And .iat.srt 6KB
- 14. Appendix A - Rapid-Fire Python Fundamentals/22. Break And Continue.srt 6KB
- 3. Series Methods And Handling/24. Cumulative Operations.srt 6KB
- 8. GroupBy And Aggregates/9. BONUS - Series groupby().srt 6KB
- 3. Series Methods And Handling/7. BONUS Another Approach.srt 6KB
- 2. Series At A Glance/20. Selecting With .get().srt 6KB
- 14. Appendix A - Rapid-Fire Python Fundamentals/12. Containers II Tuples.srt 6KB
- 10. Handling Date And Time/8. Our Dataset Brent Prices.srt 6KB
- 3. Series Methods And Handling/17. Sorting With sort_values().srt 6KB
- 10. Handling Date And Time/11. Indexing Dates.srt 6KB
- 13. Data Formats And IO/2. Reading JSON.srt 6KB
- 9. Reshaping With Pivots/9. Adding Margins.srt 6KB
- 8. GroupBy And Aggregates/6. The groupby() Method.srt 6KB
- 4. Working With DataFrames/3. Creating A DataFrame.srt 5KB
- 3. Series Methods And Handling/3. Series Sizing With .size, .shape, And len().srt 5KB
- 9. Reshaping With Pivots/2. New Data New York City SAT Scores.srt 5KB
- 8. GroupBy And Aggregates/13. Handpicking Subgroups.srt 5KB
- 6. Working With Multiple DataFrames/6. BONUS - Creating Multiple Indices With concat().srt 5KB
- 5. DataFrames In Depth/8. Conditions As Variables.srt 5KB
- 4. Working With DataFrames/5. The info() Method.srt 5KB
- 6. Working With Multiple DataFrames/7. Column Axis Concatenation.srt 5KB
- 5. DataFrames In Depth/23. BONUS - Another Way pop().srt 5KB
- 1. Introduction/6. Hello, Python.srt 5KB
- 10. Handling Date And Time/4. Even Better dateutil.srt 5KB
- 3. Series Methods And Handling/23. BONUS Calculating Variance And Standard Deviation.srt 5KB
- 6. Working With Multiple DataFrames/13. The left_on And right_on Params.srt 5KB
- 3. Series Methods And Handling/12. Dropping And Filling NAs.srt 5KB
- 7. Going MultiDimensional/3. Index And RangeIndex.srt 5KB
- 8. GroupBy And Aggregates/5. The Split-Apply-Combine Pattern.srt 5KB
- 5. DataFrames In Depth/41. BONUS - How Are DataFrames Stored In Memory.srt 5KB
- 14. Appendix A - Rapid-Fire Python Fundamentals/16. Membership Operators.srt 5KB
- 4. Working With DataFrames/11. DataFrame Axes.srt 5KB
- 11. Regex And Text Manipulation/11. Solution.srt 5KB
- 7. Going MultiDimensional/8. BONUS - Use With pd.IndexSlice!.srt 5KB
- 7. Going MultiDimensional/5. MultiIndex From read_csv().srt 5KB
- 4. Working With DataFrames/8. The sample() Method.srt 5KB
- 13. Data Formats And IO/8. The Many Other Formats.srt 5KB
- 2. Series At A Glance/2. What Is A Series.srt 5KB
- 9. Reshaping With Pivots/11. Applying Multiple Functions.srt 5KB
- 2. Series At A Glance/10. Solution.srt 5KB
- 3. Series Methods And Handling/26. Series Iteration.srt 5KB
- 10. Handling Date And Time/10. A Cool Shorcut read_csv() With parse_dates.srt 5KB
- 8. GroupBy And Aggregates/8. Customizing Index To Group Mappings.srt 5KB
- 7. Going MultiDimensional/4. Creating A MultiIndex.srt 5KB
- 4. Working With DataFrames/6. Reading In Nutrition Data.srt 5KB
- 5. DataFrames In Depth/2. Introducing A New Dataset.srt 5KB
- 2. Series At A Glance/16. Using Dot Notation.srt 5KB
- 15. Appendix B - Going Local Installation And Setup/3. Installing Anaconda And Python - Linux.srt 4KB
- 8. GroupBy And Aggregates/7. The DataFrameGroupBy Object.srt 4KB
- 14. Appendix A - Rapid-Fire Python Fundamentals/18. Truth Value Of Non-booleans.srt 4KB
- 6. Working With Multiple DataFrames/15. Left vs Right Joins.srt 4KB
- 5. DataFrames In Depth/18. Solution.srt 4KB
- 2. Series At A Glance/18. Extracting By Position With .iloc.srt 4KB
- 5. DataFrames In Depth/16. 15. BONUS - Please Avoid Sorting Like This.srt 4KB
- 14. Appendix A - Rapid-Fire Python Fundamentals/23. Zipping Iterables.srt 4KB
- 3. Series Methods And Handling/25. Pairwise Differences With diff().srt 4KB
- 11. Regex And Text Manipulation/4. Vectorized String Operations In Pandas.srt 4KB
- 5. DataFrames In Depth/3. Quick Review Indexing With Boolean Masks.srt 4KB
- 11. Regex And Text Manipulation/20. BONUS What's The Point Of re.compile().srt 4KB
- 3. Series Methods And Handling/31. Solution II - Mean, Median, And Standard Deviation.srt 4KB
- 8. GroupBy And Aggregates/12. Iterating Through Groups.srt 4KB
- Sources/drinks (1).csv 4KB
- Sources/drinks (2).csv 4KB
- Sources/drinks.csv 4KB
- 3. Series Methods And Handling/19. Sorting With sort_index().srt 4KB
- 2. Series At A Glance/15. BONUS The add_prefix() And add_suffix() Methods.srt 4KB
- 7. Going MultiDimensional/22. BONUS - What About Panels.srt 4KB
- 2. Series At A Glance/6. BONUS What Is dtype('o'), Really.srt 4KB
- 10. Handling Date And Time/13. Solution.srt 4KB
- 12. Visualizing Data/10. BONUS Data Ink And Chartjunk.srt 4KB
- 4. Working With DataFrames/19. More Cleanup Going Numeric.srt 4KB
- 3. Series Methods And Handling/9. BONUS Booleans Are Literally Numbers In Python.srt 4KB
- 8. GroupBy And Aggregates/2. New Data Game Sales.srt 4KB
- 1. Introduction/3. Anaconda.srt 4KB
- 11. Regex And Text Manipulation/2. Our Data Boston Marathon Runners.srt 4KB
- 3. Series Methods And Handling/11. Solution.srt 4KB
- 11. Regex And Text Manipulation/5. Case Operations.srt 4KB
- 9. Reshaping With Pivots/10. MultiIndex Pivot Tables.srt 4KB
- 2. Series At A Glance/11. Another Solution.srt 4KB
- 12. Visualizing Data/2. The Art Of Data Visualization.srt 4KB
- 5. DataFrames In Depth/22. BONUS - Removing Columns.srt 4KB
- 13. Data Formats And IO/9. Skill Challenge.srt 4KB
- 5. DataFrames In Depth/21. Removing DataFrame Rows.srt 3KB
- 2. Series At A Glance/3. Parameters vs Arguments.srt 3KB
- 3. Series Methods And Handling/18. nlargest() And nsmallest().srt 3KB
- 3. Series Methods And Handling/8. The Other Side notnull() And notna().srt 3KB
- 7. Going MultiDimensional/21. An Easier Way transpose().srt 3KB
- 3. Series Methods And Handling/29. Skill Challenge.srt 3KB
- 6. Working With Multiple DataFrames/19. The join() Method.srt 3KB
- 6. Working With Multiple DataFrames/8. The append() Method A Special Case Of concat().srt 3KB
- 5. DataFrames In Depth/1. Section Intro.srt 3KB
- 14. Appendix A - Rapid-Fire Python Fundamentals/2. Data Types.srt 3KB
- 9. Reshaping With Pivots/8. Replicating Pivot Tables With GroupBy.srt 3KB
- Sources/liberal_arts.csv 3KB
- 3. Series Methods And Handling/5. The count() Method.srt 3KB
- 2. Series At A Glance/9. Skill Challenge.srt 3KB
- 5. DataFrames In Depth/15. BONUS - Another Way.srt 3KB
- 5. DataFrames In Depth/34. Skill Challenge.srt 3KB
- 3. Series Methods And Handling/30. Solution I - Reading Data.srt 3KB
- 15. Appendix B - Going Local Installation And Setup/2. Installing Anaconda And Python - Mac.srt 3KB
- 2. Series At A Glance/5. The .dtype Attribute.srt 3KB
- 3. Series Methods And Handling/14. The describe() Method.srt 3KB
- 3. Series Methods And Handling/21. Solution.srt 2KB
- 1. Introduction/2. Pandas Is Not Single.srt 2KB
- 3. Series Methods And Handling/1. Section Intro.srt 2KB
- 4. Working With DataFrames/35. Another Skill Challenge.srt 2KB
- 2. Series At A Glance/22. Skill Challenge.srt 2KB
- 7. Going MultiDimensional/1. Section Intro.srt 2KB
- 14. Appendix A - Rapid-Fire Python Fundamentals/1. Section Intro.srt 2KB
- 4. Working With DataFrames/1. Section Intro.srt 2KB
- 11. Regex And Text Manipulation/1. Section Intro.srt 2KB
- 6. Working With Multiple DataFrames/10. Skill Challenge.srt 2KB
- 12. Visualizing Data/11. Skill Challenge.srt 2KB
- 5. DataFrames In Depth/42. Skill Challenge.srt 2KB
- 7. Going MultiDimensional/23. Skill Challenge.srt 2KB
- 11. Regex And Text Manipulation/22. Skill Challenge.srt 2KB
- 5. DataFrames In Depth/28. Skill Challenge.srt 2KB
- 1. Introduction/1. Course Structure.srt 2KB
- 10. Handling Date And Time/22. Skill Challenge.srt 2KB
- 4. Working With DataFrames/17. Skill Challenge.srt 2KB
- 4. Working With DataFrames/33. Skill Challenge.srt 2KB
- 12. Visualizing Data/1. Section Intro.srt 2KB
- 7. Going MultiDimensional/10. Skill Challenge.srt 2KB
- 9. Reshaping With Pivots/12. Skill Challenge.srt 2KB
- 10. Handling Date And Time/1. Section Intro.srt 2KB
- 9. Reshaping With Pivots/1. Section Intro.srt 2KB
- Sources/eng.csv 2KB
- 8. GroupBy And Aggregates/20. Skill Challenge.srt 2KB
- 6. Working With Multiple DataFrames/1. Section Intro.srt 2KB
- 5. DataFrames In Depth/9. Skill Challenge.srt 1KB
- 3. Series Methods And Handling/10. Skill Challenge.srt 1KB
- 8. GroupBy And Aggregates/1. Section Intro.srt 1KB
- 5. DataFrames In Depth/17. Skill Challenge.srt 1KB
- Sources/portfolio.zip 1KB
- 6. Working With Multiple DataFrames/20. Skill Challenge.srt 1KB
- 11. Regex And Text Manipulation/10. Skill Challenge.srt 1KB
- 2. Series At A Glance/1. Section Intro.srt 1KB
- 10. Handling Date And Time/12. Skill Challenge.srt 1KB
- 3. Series Methods And Handling/20. Skill Challenge.srt 1KB
- 8. GroupBy And Aggregates/10. Skill Challenge.srt 1KB
- 13. Data Formats And IO/1. Section Intro.srt 1KB
- Sources/ivies.csv 548B
- Sources/folks.json 244B
- 0. Websites you may like/[CourseClub.Me].url 122B
- 12. Visualizing Data/[CourseClub.Me].url 122B
- 5. DataFrames In Depth/[CourseClub.Me].url 122B
- [CourseClub.Me].url 122B
- 0. Websites you may like/[GigaCourse.Com].url 49B
- 12. Visualizing Data/[GigaCourse.Com].url 49B
- 5. DataFrames In Depth/[GigaCourse.Com].url 49B
- [GigaCourse.Com].url 49B