589689.xyz

[] Udemy - The Ultimate Pandas Bootcamp Advanced Python Data Analysis

  • 收录时间:2021-12-02 22:56:39
  • 文件大小:10GB
  • 下载次数:1
  • 最近下载:2021-12-02 22:56:39
  • 磁力链接:

文件列表

  1. 13. Data Formats And IO/3. Reading HTML.mp4 104MB
  2. 11. Regex And Text Manipulation/19. Is This A Valid Email.mp4 80MB
  3. 11. Regex And Text Manipulation/21. Pandas str contains(), split() And replace() With Regex.mp4 76MB
  4. 11. Regex And Text Manipulation/16. Introduction To Regular Expressions.mp4 75MB
  5. 13. Data Formats And IO/5. Creating Output The to_ Family Of Methods.mp4 74MB
  6. 4. Working With DataFrames/4. BONUS - Four More Ways To Build DataFrames.mp4 73MB
  7. 11. Regex And Text Manipulation/23. Solution.mp4 72MB
  8. 15. Appendix B - Going Local Installation And Setup/1. Installing Anaconda And Python - Windows.mp4 71MB
  9. 3. Series Methods And Handling/28. Transforming With update(), apply() And map().mp4 70MB
  10. 5. DataFrames In Depth/33. Element-wise Operations With applymap().mp4 69MB
  11. 5. DataFrames In Depth/4. More Approaches To Boolean Masking.mp4 68MB
  12. 5. DataFrames In Depth/31. Same-shape Transforms.mp4 67MB
  13. 4. Working With DataFrames/22. Part I Collecting The Units.mp4 67MB
  14. 11. Regex And Text Manipulation/14. BONUS Parsing Indicators With get_dummies().mp4 66MB
  15. 5. DataFrames In Depth/14. Sorting vs. Reordering.mp4 65MB
  16. 11. Regex And Text Manipulation/17. More Regex Concepts.mp4 65MB
  17. 12. Visualizing Data/9. Other Visualization Options.mp4 64MB
  18. 11. Regex And Text Manipulation/18. How To Approach Regex.mp4 64MB
  19. 12. Visualizing Data/8. Scatter Plots.mp4 63MB
  20. 4. Working With DataFrames/31. BONUS - Min, Max and Idx[MinMax], And Good Foods.mp4 63MB
  21. 12. Visualizing Data/3. The Preliminaries Of matplotlib.mp4 63MB
  22. 1. Introduction/7. NumPy.mp4 62MB
  23. 5. DataFrames In Depth/19. Identifying Dupes.mp4 61MB
  24. 6. Working With Multiple DataFrames/11. Solution.mp4 59MB
  25. 5. DataFrames In Depth/32. More Flexibility With apply().mp4 59MB
  26. 7. Going MultiDimensional/7. Indexing Ranges And Slices.mp4 59MB
  27. 7. Going MultiDimensional/20. BONUS Creating MultiLevel Columns Manually.mp4 59MB
  28. 6. Working With Multiple DataFrames/5. Enforcing Unique Indices.mp4 58MB
  29. 14. Appendix A - Rapid-Fire Python Fundamentals/25. Defining Functions.mp4 58MB
  30. 5. DataFrames In Depth/27. BONUS - Methods And Axes With fillna().mp4 57MB
  31. 4. Working With DataFrames/26. Part II Merging Units With Column Names.mp4 57MB
  32. 6. Working With Multiple DataFrames/16. One-to-One and One-to-Many Joins.mp4 57MB
  33. 13. Data Formats And IO/4. Reading Excel.mp4 56MB
  34. 6. Working With Multiple DataFrames/17. Many-to-Many Joins.mp4 56MB
  35. 3. Series Methods And Handling/27. Filtering filter(), where(), And mask().mp4 55MB
  36. 12. Visualizing Data/6. Pie Plots.mp4 55MB
  37. 12. Visualizing Data/12. Solution.mp4 54MB
  38. 12. Visualizing Data/4. Line Graphs.mp4 54MB
  39. 14. Appendix A - Rapid-Fire Python Fundamentals/13. Containers III Sets.mp4 53MB
  40. 10. Handling Date And Time/3. Parsing Dates From Text.mp4 53MB
  41. 3. Series Methods And Handling/2. Reading In Data With read_csv().mp4 53MB
  42. 6. Working With Multiple DataFrames/4. The Duplicated Index Issue.mp4 51MB
  43. 5. DataFrames In Depth/6. BONUS - XOR and Complement Binary Ops.mp4 50MB
  44. 4. Working With DataFrames/12. Changing The Index.mp4 50MB
  45. 12. Visualizing Data/5. Bar Charts.mp4 50MB
  46. 5. DataFrames In Depth/40. Adding Rows To DataFrames.mp4 50MB
  47. 4. Working With DataFrames/29. DataFrame Sorting.mp4 49MB
  48. 10. Handling Date And Time/19. Upsampling And Interpolation.mp4 49MB
  49. 5. DataFrames In Depth/38. View vs Copy.mp4 49MB
  50. 7. Going MultiDimensional/24. Solution.mp4 49MB
  51. 5. DataFrames In Depth/26. Dropping And Filling DataFrame NAs.mp4 49MB
  52. 3. Series Methods And Handling/32. Solution III - Z-scores.mp4 48MB
  53. 1. Introduction/4. Jupyter Notebooks.mp4 48MB
  54. 4. Working With DataFrames/14. DataFrame Extraction by Position.mp4 47MB
  55. 11. Regex And Text Manipulation/8. String Splitting And Concatenation.mp4 46MB
  56. 5. DataFrames In Depth/12. Fancy Indexing With lookup().mp4 46MB
  57. 6. Working With Multiple DataFrames/21. Solution.mp4 46MB
  58. 7. Going MultiDimensional/19. The Flipside unstack().mp4 46MB
  59. 4. Working With DataFrames/2. What Is A DataFrame.mp4 46MB
  60. 13. Data Formats And IO/10. Solution.mp4 46MB
  61. 12. Visualizing Data/7. Histograms.mp4 46MB
  62. 5. DataFrames In Depth/7. Combining Conditions.mp4 46MB
  63. 4. Working With DataFrames/18. Solution.mp4 45MB
  64. 5. DataFrames In Depth/13. Sorting By Index Or Column.mp4 45MB
  65. 7. Going MultiDimensional/11. Solution.mp4 45MB
  66. 4. Working With DataFrames/21. DataFrame replace() + A Glimpse At Regex.mp4 44MB
  67. 8. GroupBy And Aggregates/15. Fine-tuned Aggregates.mp4 44MB
  68. 5. DataFrames In Depth/36. Setting DataFrame Values.mp4 44MB
  69. 10. Handling Date And Time/21. BONUS Rolling Windows.mp4 43MB
  70. 4. Working With DataFrames/10. BONUS - How Are Random Numbers Generated.mp4 43MB
  71. 14. Appendix A - Rapid-Fire Python Fundamentals/5. Ints And Floats.mp4 43MB
  72. 5. DataFrames In Depth/29. Solution.mp4 42MB
  73. 4. Working With DataFrames/28. Filtering in 2D.mp4 42MB
  74. 4. Working With DataFrames/34. Solution.mp4 42MB
  75. 5. DataFrames In Depth/25. Null Values In DataFrames.mp4 42MB
  76. 6. Working With Multiple DataFrames/3. Concatenating DataFrames.mp4 42MB
  77. 9. Reshaping With Pivots/3. Pivoting Data.mp4 42MB
  78. 11. Regex And Text Manipulation/15. Text Replacement.mp4 42MB
  79. 14. Appendix A - Rapid-Fire Python Fundamentals/17. Controlling Flow if, else, And elif.mp4 42MB
  80. 8. GroupBy And Aggregates/19. BONUS - There's Also apply().mp4 41MB
  81. 6. Working With Multiple DataFrames/2. Introducing (Five) New Datasets.mp4 41MB
  82. 4. Working With DataFrames/9. BONUS - Sampling With Replacement Or Weights.mp4 40MB
  83. 10. Handling Date And Time/2. The Python datetime Module.mp4 40MB
  84. 3. Series Methods And Handling/22. Series Arithmetics And fill_value().mp4 40MB
  85. 11. Regex And Text Manipulation/9. More Split Parameters.mp4 40MB
  86. 4. Working With DataFrames/24. DataFrame dropna().mp4 40MB
  87. 5. DataFrames In Depth/10. Solution.mp4 40MB
  88. 5. DataFrames In Depth/11. 2d Indexing.mp4 40MB
  89. 5. DataFrames In Depth/37. The SettingWithCopy Warning.mp4 40MB
  90. 7. Going MultiDimensional/6. Indexing Hierarchical DataFrames.mp4 39MB
  91. 14. Appendix A - Rapid-Fire Python Fundamentals/3. Variables.mp4 39MB
  92. 8. GroupBy And Aggregates/18. GroupBy Transformations.mp4 39MB
  93. 10. Handling Date And Time/18. Resampling Timeseries.mp4 39MB
  94. 6. Working With Multiple DataFrames/9. Concat On Different Columns.mp4 38MB
  95. 10. Handling Date And Time/14. DateTimeIndex Attribute Accessors.mp4 38MB
  96. 6. Working With Multiple DataFrames/18. Merging By Index.mp4 38MB
  97. 5. DataFrames In Depth/5. Binary Operators With Booleans.mp4 38MB
  98. 7. Going MultiDimensional/17. More MultiIndex Methods.mp4 38MB
  99. 7. Going MultiDimensional/15. Removing MultiIndex Levels.mp4 38MB
  100. 2. Series At A Glance/19. BONUS Using Callables With .loc And .iloc.mp4 37MB
  101. 5. DataFrames In Depth/30. Calculating Aggregates With agg().mp4 37MB
  102. 11. Regex And Text Manipulation/13. Masking With String Methods.mp4 37MB
  103. 4. Working With DataFrames/36. Solution.mp4 37MB
  104. 3. Series Methods And Handling/6. Accessing And Counting NAs.mp4 37MB
  105. 9. Reshaping With Pivots/13. Solution.mp4 37MB
  106. 10. Handling Date And Time/20. What About asfreq().mp4 37MB
  107. 10. Handling Date And Time/15. Creating Date Ranges.mp4 37MB
  108. 8. GroupBy And Aggregates/16. Named Aggregations.mp4 36MB
  109. 5. DataFrames In Depth/39. Adding DataFrame Columns.mp4 36MB
  110. 14. Appendix A - Rapid-Fire Python Fundamentals/15. Dictionary Keys And Values.mp4 36MB
  111. 10. Handling Date And Time/16. Shifting Dates With pd.DateOffset.mp4 36MB
  112. 9. Reshaping With Pivots/7. BONUS The Problem With Average Percentage.mp4 36MB
  113. 4. Working With DataFrames/13. Extracting From DataFrames By Label.mp4 36MB
  114. 4. Working With DataFrames/27. Part III Removing Units From Values.mp4 36MB
  115. 4. Working With DataFrames/7. Some Cleanup Removing The Duplicated Index.mp4 36MB
  116. 7. Going MultiDimensional/16. MultiIndex sort_index().mp4 36MB
  117. 6. Working With Multiple DataFrames/12. The merge() Method.mp4 35MB
  118. 4. Working With DataFrames/32. DataFrame nlargest() And nsmallest().mp4 35MB
  119. 10. Handling Date And Time/6. Performant Datetimes With Numpy.mp4 35MB
  120. 4. Working With DataFrames/30. Using Series between() With DataFrames.mp4 35MB
  121. 7. Going MultiDimensional/12. The Anatomy Of A MultiIndex Object.mp4 35MB
  122. 9. Reshaping With Pivots/5. What About Aggregates.mp4 34MB
  123. 14. Appendix A - Rapid-Fire Python Fundamentals/28. Importing Modules.mp4 34MB
  124. 3. Series Methods And Handling/13. Descriptive Statistics.mp4 34MB
  125. 9. Reshaping With Pivots/6. The pivot_table().mp4 34MB
  126. 7. Going MultiDimensional/13. Adding Another Level.mp4 34MB
  127. 5. DataFrames In Depth/24. BONUS - A Sophisticated Alternative.mp4 33MB
  128. 2. Series At A Glance/7. Index And RangeIndex.mp4 33MB
  129. 7. Going MultiDimensional/9. Cross Sections With xs().mp4 33MB
  130. 14. Appendix A - Rapid-Fire Python Fundamentals/11. List Methods And Functions.mp4 33MB
  131. 1. Introduction/6. Hello, Python.mp4 33MB
  132. 12. Visualizing Data/10. BONUS Data Ink And Chartjunk.mp4 32MB
  133. 6. Working With Multiple DataFrames/13. The left_on And right_on Params.mp4 32MB
  134. 14. Appendix A - Rapid-Fire Python Fundamentals/7. Strings.mp4 32MB
  135. 5. DataFrames In Depth/43. Solution.mp4 32MB
  136. 14. Appendix A - Rapid-Fire Python Fundamentals/24. List Comprehensions.mp4 32MB
  137. 3. Series Methods And Handling/15. mode() And value_counts().mp4 32MB
  138. 11. Regex And Text Manipulation/7. Strips And Whitespace.mp4 32MB
  139. 13. Data Formats And IO/6. BONUS Introduction To Pickling.mp4 32MB
  140. 15. Appendix B - Going Local Installation And Setup/3. Installing Anaconda And Python - Linux.mp4 31MB
  141. 7. Going MultiDimensional/18. Reshaping With stack().mp4 31MB
  142. 2. Series At A Glance/20. Selecting With .get().mp4 31MB
  143. 14. Appendix A - Rapid-Fire Python Fundamentals/26. Function Arguments Positional vs Keyword.mp4 30MB
  144. 5. DataFrames In Depth/20. Removing Duplicates.mp4 30MB
  145. 14. Appendix A - Rapid-Fire Python Fundamentals/9. Containers I Lists.mp4 29MB
  146. 2. Series At A Glance/17. Boolean Masks And The .loc Indexer.mp4 29MB
  147. 10. Handling Date And Time/8. Our Dataset Brent Prices.mp4 29MB
  148. 4. Working With DataFrames/25. BONUS - dropna() With Subset.mp4 29MB
  149. 14. Appendix A - Rapid-Fire Python Fundamentals/21. While Loops.mp4 29MB
  150. 2. Series At A Glance/13. Extracting By Index Position.mp4 29MB
  151. 8. GroupBy And Aggregates/3. Simple Aggregations Review.mp4 29MB
  152. 11. Regex And Text Manipulation/3. String Methods In Python.mp4 29MB
  153. 6. Working With Multiple DataFrames/6. BONUS - Creating Multiple Indices With concat().mp4 28MB
  154. 10. Handling Date And Time/17. BONUS Timedeltas And Absolute Time.mp4 28MB
  155. 2. Series At A Glance/21. Selection Recap.mp4 28MB
  156. 13. Data Formats And IO/8. The Many Other Formats.mp4 28MB
  157. 9. Reshaping With Pivots/4. Undoing Pivots.mp4 28MB
  158. 7. Going MultiDimensional/22. BONUS - What About Panels.mp4 28MB
  159. 7. Going MultiDimensional/5. MultiIndex From read_csv().mp4 28MB
  160. 8. GroupBy And Aggregates/11. Solution.mp4 28MB
  161. 4. Working With DataFrames/23. The rename() Method.mp4 28MB
  162. 14. Appendix A - Rapid-Fire Python Fundamentals/10. Lists vs. Strings.mp4 28MB
  163. 14. Appendix A - Rapid-Fire Python Fundamentals/4. Arithmetic And Augmented Assignment Operators.mp4 27MB
  164. 4. Working With DataFrames/6. Reading In Nutrition Data.mp4 27MB
  165. 6. Working With Multiple DataFrames/14. Inner vs Outer Joins.mp4 27MB
  166. 6. Working With Multiple DataFrames/7. Column Axis Concatenation.mp4 27MB
  167. 2. Series At A Glance/14. Accessing Elements By Label.mp4 27MB
  168. 7. Going MultiDimensional/3. Index And RangeIndex.mp4 27MB
  169. 9. Reshaping With Pivots/2. New Data New York City SAT Scores.mp4 27MB
  170. 10. Handling Date And Time/11. Indexing Dates.mp4 27MB
  171. 8. GroupBy And Aggregates/14. MultiIndex Grouping.mp4 27MB
  172. 1. Introduction/5. Cloud vs Local.mp4 27MB
  173. 5. DataFrames In Depth/35. Solution.mp4 26MB
  174. 7. Going MultiDimensional/1. Section Intro.mp4 26MB
  175. 4. Working With DataFrames/15. Single Value Access With .at And .iat.mp4 26MB
  176. 8. GroupBy And Aggregates/17. The filter() Method.mp4 26MB
  177. 5. DataFrames In Depth/18. Solution.mp4 26MB
  178. 11. Regex And Text Manipulation/6. Finding Characters And Words.mp4 26MB
  179. 14. Appendix A - Rapid-Fire Python Fundamentals/8. Methods.mp4 25MB
  180. 4. Working With DataFrames/20. The astype() Method.mp4 25MB
  181. 4. Working With DataFrames/16. BONUS - The get_loc() Method.mp4 25MB
  182. 9. Reshaping With Pivots/9. Adding Margins.mp4 25MB
  183. 10. Handling Date And Time/9. Date Parsing And DatetimeIndex.mp4 25MB
  184. 8. GroupBy And Aggregates/21. Solution.mp4 25MB
  185. 8. GroupBy And Aggregates/4. Conditional Aggregates.mp4 25MB
  186. 7. Going MultiDimensional/14. Shuffling Levels.mp4 24MB
  187. 11. Regex And Text Manipulation/12. Slicing Substrings.mp4 24MB
  188. 10. Handling Date And Time/7. The Pandas Timestamp.mp4 24MB
  189. 10. Handling Date And Time/4. Even Better dateutil.mp4 24MB
  190. 9. Reshaping With Pivots/1. Section Intro.mp4 24MB
  191. 14. Appendix A - Rapid-Fire Python Fundamentals/20. The range() Immutable Sequence.mp4 24MB
  192. 8. GroupBy And Aggregates/13. Handpicking Subgroups.mp4 24MB
  193. 11. Regex And Text Manipulation/2. Our Data Boston Marathon Runners.mp4 24MB
  194. 2. Series At A Glance/23. Solution.mp4 23MB
  195. 5. DataFrames In Depth/3. Quick Review Indexing With Boolean Masks.mp4 23MB
  196. 4. Working With DataFrames/11. DataFrame Axes.mp4 23MB
  197. 3. Series Methods And Handling/3. Series Sizing With .size, .shape, And len().mp4 23MB
  198. 14. Appendix A - Rapid-Fire Python Fundamentals/27. Lambdas.mp4 23MB
  199. 2. Series At A Glance/12. The head() And tail() Methods.mp4 23MB
  200. 13. Data Formats And IO/7. Pickles In Pandas.mp4 23MB
  201. 10. Handling Date And Time/23. Solution.mp4 23MB
  202. 2. Series At A Glance/10. Solution.mp4 23MB
  203. 6. Working With Multiple DataFrames/19. The join() Method.mp4 23MB
  204. 14. Appendix A - Rapid-Fire Python Fundamentals/14. Containers IV Dictionaries.mp4 23MB
  205. 4. Working With DataFrames/8. The sample() Method.mp4 23MB
  206. 8. GroupBy And Aggregates/5. The Split-Apply-Combine Pattern.mp4 23MB
  207. 4. Working With DataFrames/3. Creating A DataFrame.mp4 22MB
  208. 10. Handling Date And Time/5. From Datetime To String.mp4 22MB
  209. 10. Handling Date And Time/1. Section Intro.mp4 22MB
  210. 7. Going MultiDimensional/2. Introducing New Data.mp4 22MB
  211. 3. Series Methods And Handling/16. idxmax() And idxmin().mp4 22MB
  212. 11. Regex And Text Manipulation/11. Solution.mp4 22MB
  213. 14. Appendix A - Rapid-Fire Python Fundamentals/6. Booleans And Comparison Operators.mp4 22MB
  214. 5. DataFrames In Depth/41. BONUS - How Are DataFrames Stored In Memory.mp4 22MB
  215. 8. GroupBy And Aggregates/6. The groupby() Method.mp4 22MB
  216. 3. Series Methods And Handling/12. Dropping And Filling NAs.mp4 22MB
  217. 3. Series Methods And Handling/7. BONUS Another Approach.mp4 21MB
  218. 5. DataFrames In Depth/1. Section Intro.mp4 21MB
  219. 8. GroupBy And Aggregates/12. Iterating Through Groups.mp4 21MB
  220. 8. GroupBy And Aggregates/9. BONUS - Series groupby().mp4 21MB
  221. 1. Introduction/3. Anaconda.mp4 21MB
  222. 14. Appendix A - Rapid-Fire Python Fundamentals/19. For Loops.mp4 21MB
  223. 8. GroupBy And Aggregates/8. Customizing Index To Group Mappings.mp4 20MB
  224. 3. Series Methods And Handling/31. Solution II - Mean, Median, And Standard Deviation.mp4 20MB
  225. 2. Series At A Glance/4. What’s In The Data.mp4 20MB
  226. 6. Working With Multiple DataFrames/15. Left vs Right Joins.mp4 20MB
  227. 7. Going MultiDimensional/4. Creating A MultiIndex.mp4 20MB
  228. 14. Appendix A - Rapid-Fire Python Fundamentals/12. Containers II Tuples.mp4 20MB
  229. 5. DataFrames In Depth/8. Conditions As Variables.mp4 20MB
  230. 8. GroupBy And Aggregates/7. The DataFrameGroupBy Object.mp4 20MB
  231. 5. DataFrames In Depth/21. Removing DataFrame Rows.mp4 20MB
  232. 13. Data Formats And IO/2. Reading JSON.mp4 20MB
  233. 3. Series Methods And Handling/17. Sorting With sort_values().mp4 20MB
  234. 14. Appendix A - Rapid-Fire Python Fundamentals/16. Membership Operators.mp4 19MB
  235. 14. Appendix A - Rapid-Fire Python Fundamentals/22. Break And Continue.mp4 19MB
  236. 2. Series At A Glance/8. Series And Index Names.mp4 19MB
  237. 5. DataFrames In Depth/23. BONUS - Another Way pop().mp4 19MB
  238. 9. Reshaping With Pivots/10. MultiIndex Pivot Tables.mp4 19MB
  239. 4. Working With DataFrames/5. The info() Method.mp4 19MB
  240. 4. Working With DataFrames/19. More Cleanup Going Numeric.mp4 19MB
  241. 7. Going MultiDimensional/21. An Easier Way transpose().mp4 19MB
  242. 11. Regex And Text Manipulation/4. Vectorized String Operations In Pandas.mp4 18MB
  243. 9. Reshaping With Pivots/11. Applying Multiple Functions.mp4 18MB
  244. 11. Regex And Text Manipulation/20. BONUS What's The Point Of re.compile().mp4 18MB
  245. 5. DataFrames In Depth/2. Introducing A New Dataset.mp4 18MB
  246. 3. Series Methods And Handling/24. Cumulative Operations.mp4 18MB
  247. 1. Introduction/2. Pandas Is Not Single.mp4 18MB
  248. 3. Series Methods And Handling/4. Unique Values And Series Monotonicity.mp4 18MB
  249. 10. Handling Date And Time/10. A Cool Shorcut read_csv() With parse_dates.mp4 18MB
  250. 3. Series Methods And Handling/23. BONUS Calculating Variance And Standard Deviation.mp4 17MB
  251. 14. Appendix A - Rapid-Fire Python Fundamentals/23. Zipping Iterables.mp4 17MB
  252. 15. Appendix B - Going Local Installation And Setup/2. Installing Anaconda And Python - Mac.mp4 17MB
  253. 10. Handling Date And Time/13. Solution.mp4 17MB
  254. 8. GroupBy And Aggregates/1. Section Intro.mp4 17MB
  255. 5. DataFrames In Depth/16. 15. BONUS - Please Avoid Sorting Like This.mp4 17MB
  256. 7. Going MultiDimensional/8. BONUS - Use With pd.IndexSlice!.mp4 17MB
  257. 11. Regex And Text Manipulation/1. Section Intro.mp4 17MB
  258. 2. Series At A Glance/15. BONUS The add_prefix() And add_suffix() Methods.mp4 16MB
  259. 5. DataFrames In Depth/22. BONUS - Removing Columns.mp4 16MB
  260. 3. Series Methods And Handling/26. Series Iteration.mp4 16MB
  261. 14. Appendix A - Rapid-Fire Python Fundamentals/18. Truth Value Of Non-booleans.mp4 16MB
  262. 3. Series Methods And Handling/19. Sorting With sort_index().mp4 15MB
  263. 8. GroupBy And Aggregates/2. New Data Game Sales.mp4 15MB
  264. 3. Series Methods And Handling/30. Solution I - Reading Data.mp4 15MB
  265. 6. Working With Multiple DataFrames/8. The append() Method A Special Case Of concat().mp4 14MB
  266. 1. Introduction/1. Course Structure.mp4 14MB
  267. 11. Regex And Text Manipulation/5. Case Operations.mp4 14MB
  268. 3. Series Methods And Handling/11. Solution.mp4 13MB
  269. 2. Series At A Glance/16. Using Dot Notation.mp4 13MB
  270. 12. Visualizing Data/2. The Art Of Data Visualization.mp4 13MB
  271. 5. DataFrames In Depth/15. BONUS - Another Way.mp4 13MB
  272. 3. Series Methods And Handling/1. Section Intro.mp4 13MB
  273. 3. Series Methods And Handling/25. Pairwise Differences With diff().mp4 13MB
  274. 2. Series At A Glance/2. What Is A Series.mp4 13MB
  275. 9. Reshaping With Pivots/8. Replicating Pivot Tables With GroupBy.mp4 13MB
  276. 3. Series Methods And Handling/18. nlargest() And nsmallest().mp4 12MB
  277. 13. Data Formats And IO/9. Skill Challenge.mp4 12MB
  278. 3. Series Methods And Handling/9. BONUS Booleans Are Literally Numbers In Python.mp4 12MB
  279. 2. Series At A Glance/18. Extracting By Position With .iloc.mp4 12MB
  280. 2. Series At A Glance/11. Another Solution.mp4 11MB
  281. 3. Series Methods And Handling/8. The Other Side notnull() And notna().mp4 11MB
  282. 4. Working With DataFrames/1. Section Intro.mp4 11MB
  283. 12. Visualizing Data/1. Section Intro.mp4 10MB
  284. 3. Series Methods And Handling/29. Skill Challenge.mp4 10MB
  285. 14. Appendix A - Rapid-Fire Python Fundamentals/2. Data Types.mp4 10MB
  286. 2. Series At A Glance/6. BONUS What Is dtype('o'), Really.mp4 10MB
  287. 3. Series Methods And Handling/21. Solution.mp4 10MB
  288. 3. Series Methods And Handling/14. The describe() Method.mp4 10MB
  289. 14. Appendix A - Rapid-Fire Python Fundamentals/1. Section Intro.mp4 9MB
  290. 5. DataFrames In Depth/34. Skill Challenge.mp4 9MB
  291. 2. Series At A Glance/3. Parameters vs Arguments.mp4 8MB
  292. 7. Going MultiDimensional/23. Skill Challenge.mp4 8MB
  293. 6. Working With Multiple DataFrames/1. Section Intro.mp4 8MB
  294. 2. Series At A Glance/9. Skill Challenge.mp4 8MB
  295. 12. Visualizing Data/11. Skill Challenge.mp4 8MB
  296. 2. Series At A Glance/1. Section Intro.mp4 7MB
  297. 4. Working With DataFrames/35. Another Skill Challenge.mp4 7MB
  298. 2. Series At A Glance/22. Skill Challenge.mp4 6MB
  299. 2. Series At A Glance/5. The .dtype Attribute.mp4 6MB
  300. 3. Series Methods And Handling/5. The count() Method.mp4 6MB
  301. 6. Working With Multiple DataFrames/10. Skill Challenge.mp4 6MB
  302. 9. Reshaping With Pivots/12. Skill Challenge.mp4 5MB
  303. 11. Regex And Text Manipulation/22. Skill Challenge.mp4 5MB
  304. 5. DataFrames In Depth/28. Skill Challenge.mp4 5MB
  305. 13. Data Formats And IO/1. Section Intro.mp4 5MB
  306. 5. DataFrames In Depth/42. Skill Challenge.mp4 5MB
  307. 10. Handling Date And Time/22. Skill Challenge.mp4 5MB
  308. 5. DataFrames In Depth/17. Skill Challenge.mp4 4MB
  309. Sources/nutrition.csv 4MB
  310. 4. Working With DataFrames/33. Skill Challenge.mp4 4MB
  311. 4. Working With DataFrames/17. Skill Challenge.mp4 4MB
  312. 8. GroupBy And Aggregates/20. Skill Challenge.mp4 4MB
  313. 3. Series Methods And Handling/10. Skill Challenge.mp4 4MB
  314. 5. DataFrames In Depth/9. Skill Challenge.mp4 4MB
  315. 6. Working With Multiple DataFrames/20. Skill Challenge.mp4 4MB
  316. 10. Handling Date And Time/12. Skill Challenge.mp4 4MB
  317. 7. Going MultiDimensional/10. Skill Challenge.mp4 4MB
  318. 11. Regex And Text Manipulation/10. Skill Challenge.mp4 3MB
  319. 8. GroupBy And Aggregates/10. Skill Challenge.mp4 3MB
  320. 3. Series Methods And Handling/20. Skill Challenge.mp4 3MB
  321. Sources/Visualizing_Data.ipynb.zip 501KB
  322. Sources/tech_giants (1).csv 467KB
  323. Sources/tech_giants.csv 467KB
  324. Sources/MemoryLayout.pdf 246KB
  325. Sources/games_sales (1).csv 237KB
  326. Sources/games_sales (2).csv 237KB
  327. Sources/games_sales.csv 237KB
  328. Sources/Vectorization.pdf 115KB
  329. Sources/SplitApplyCombine.pdf 115KB
  330. Sources/SelectionRecap.pdf 111KB
  331. Sources/WhatIsDtype.pdf 111KB
  332. Sources/MultiIndexInternals.pdf 111KB
  333. Sources/Working_With_DataFrames.zip 106KB
  334. Sources/Handling_Time_And_Date.ipynb.zip 105KB
  335. Sources/BrentOilPrices (1).csv 79KB
  336. Sources/BrentOilPrices.csv 79KB
  337. Sources/WhatIsASeries.pdf 75KB
  338. Sources/scores (1).csv 75KB
  339. Sources/scores.csv 75KB
  340. Sources/SelectionTerminology.pdf 67KB
  341. Sources/3KeyConcepts.pdf 63KB
  342. Sources/ConcatVsMerge.pdf 63KB
  343. Sources/WhatIsCSV.pdf 63KB
  344. Sources/TwosComplement.pdf 60KB
  345. Sources/DataFrames_In_Depth.zip 59KB
  346. Sources/DropnaWithSubset.pdf 59KB
  347. Sources/2017BostonMarathonTop1000 (1).csv 58KB
  348. Sources/2017BostonMarathonTop1000.csv 58KB
  349. Sources/DroppingAndFillingNA.pdf 57KB
  350. Sources/ViewVsCopy.pdf 53KB
  351. Sources/Lookup.pdf 50KB
  352. Sources/AppendVsConcat.pdf 49KB
  353. Sources/Transforms.pdf 47KB
  354. Sources/SortValueOrIndex.pdf 44KB
  355. Sources/BooleanMasks.pdf 44KB
  356. Sources/InnerVsOuter.pdf 44KB
  357. Sources/SeriesAtGlance.pdf 43KB
  358. Sources/Diff.pdf 42KB
  359. Sources/SizeAndShape.pdf 42KB
  360. Sources/SeriesAccounting.pdf 42KB
  361. Sources/Going_MultiDimensional.zip 42KB
  362. Sources/SeqVsVectorizedOperations.pdf 41KB
  363. Sources/LeftVsRight.pdf 41KB
  364. Sources/IdxminIdxmax.pdf 40KB
  365. Sources/Variance.pdf 38KB
  366. Sources/RangeVSInt64Index.pdf 38KB
  367. Sources/BoolsAsInts.pdf 37KB
  368. Sources/ValueCounts.pdf 36KB
  369. Sources/JoinCardinalities.pdf 35KB
  370. Sources/soccer.csv 34KB
  371. Sources/OurProcess.pdf 33KB
  372. Sources/Median.pdf 32KB
  373. Sources/MethodsVAttribtues.pdf 32KB
  374. Sources/Series_Methods_And_Handling.zip 32KB
  375. Sources/AtAndIat.pdf 31KB
  376. Sources/Regex_And_Text_Manipulation.ipynb.zip 30KB
  377. Sources/IndexingWithCallables.pdf 29KB
  378. Sources/MoreWaysToBuildDataframes.pdf 29KB
  379. Sources/Comparators.pdf 29KB
  380. Sources/Working_With_Multiple_DataFrames.zip 27KB
  381. Sources/ViewVsCopyHowDoWeTell.pdf 27KB
  382. Sources/Appendix_A_Rapid_Fire_Python_Fundamentals.ipynb.zip 26KB
  383. Sources/BinaryOperators.pdf 24KB
  384. Sources/Duplicates.pdf 24KB
  385. Sources/Data_Formats_And_I_O.ipynb.zip 24KB
  386. Sources/mid_career_salaries.csv 23KB
  387. Sources/GroupBy_And_Aggregates.ipynb.zip 22KB
  388. Sources/WhatsInTheData.pdf 19KB
  389. 11. Regex And Text Manipulation/19. Is This A Valid Email.srt 19KB
  390. 13. Data Formats And IO/5. Creating Output The to_ Family Of Methods.srt 19KB
  391. Sources/ArgsVParams.pdf 18KB
  392. 5. DataFrames In Depth/31. Same-shape Transforms.srt 18KB
  393. 11. Regex And Text Manipulation/21. Pandas str contains(), split() And replace() With Regex.srt 17KB
  394. 4. Working With DataFrames/4. BONUS - Four More Ways To Build DataFrames.srt 17KB
  395. Sources/Reshaping_With_Pivots.ipynb.zip 17KB
  396. 13. Data Formats And IO/3. Reading HTML.srt 16KB
  397. 5. DataFrames In Depth/32. More Flexibility With apply().srt 16KB
  398. 11. Regex And Text Manipulation/16. Introduction To Regular Expressions.srt 16KB
  399. 5. DataFrames In Depth/33. Element-wise Operations With applymap().srt 16KB
  400. 4. Working With DataFrames/22. Part I Collecting The Units.srt 15KB
  401. 7. Going MultiDimensional/7. Indexing Ranges And Slices.srt 15KB
  402. 11. Regex And Text Manipulation/23. Solution.srt 15KB
  403. 3. Series Methods And Handling/28. Transforming With update(), apply() And map().srt 15KB
  404. 5. DataFrames In Depth/14. Sorting vs. Reordering.srt 14KB
  405. 12. Visualizing Data/3. The Preliminaries Of matplotlib.srt 14KB
  406. 1. Introduction/7. NumPy.srt 14KB
  407. 5. DataFrames In Depth/6. BONUS - XOR and Complement Binary Ops.srt 14KB
  408. 1. Introduction/4. Jupyter Notebooks.srt 14KB
  409. 14. Appendix A - Rapid-Fire Python Fundamentals/25. Defining Functions.srt 14KB
  410. Sources/Series_At_Glance.zip 14KB
  411. 12. Visualizing Data/4. Line Graphs.srt 14KB
  412. 3. Series Methods And Handling/27. Filtering filter(), where(), And mask().srt 13KB
  413. 11. Regex And Text Manipulation/18. How To Approach Regex.srt 13KB
  414. 10. Handling Date And Time/21. BONUS Rolling Windows.srt 13KB
  415. 6. Working With Multiple DataFrames/11. Solution.srt 13KB
  416. 4. Working With DataFrames/26. Part II Merging Units With Column Names.srt 13KB
  417. 5. DataFrames In Depth/19. Identifying Dupes.srt 13KB
  418. 4. Working With DataFrames/21. DataFrame replace() + A Glimpse At Regex.srt 13KB
  419. 7. Going MultiDimensional/20. BONUS Creating MultiLevel Columns Manually.srt 13KB
  420. 11. Regex And Text Manipulation/14. BONUS Parsing Indicators With get_dummies().srt 13KB
  421. 10. Handling Date And Time/2. The Python datetime Module.srt 13KB
  422. 11. Regex And Text Manipulation/17. More Regex Concepts.srt 12KB
  423. 12. Visualizing Data/8. Scatter Plots.srt 12KB
  424. 14. Appendix A - Rapid-Fire Python Fundamentals/13. Containers III Sets.srt 12KB
  425. 5. DataFrames In Depth/5. Binary Operators With Booleans.srt 12KB
  426. 4. Working With DataFrames/2. What Is A DataFrame.srt 12KB
  427. 12. Visualizing Data/6. Pie Plots.srt 12KB
  428. 4. Working With DataFrames/24. DataFrame dropna().srt 12KB
  429. 12. Visualizing Data/5. Bar Charts.srt 12KB
  430. Sources/state.csv 12KB
  431. 10. Handling Date And Time/3. Parsing Dates From Text.srt 12KB
  432. 5. DataFrames In Depth/4. More Approaches To Boolean Masking.srt 12KB
  433. 12. Visualizing Data/7. Histograms.srt 11KB
  434. 14. Appendix A - Rapid-Fire Python Fundamentals/5. Ints And Floats.srt 11KB
  435. 5. DataFrames In Depth/11. 2d Indexing.srt 11KB
  436. 5. DataFrames In Depth/30. Calculating Aggregates With agg().srt 11KB
  437. 5. DataFrames In Depth/40. Adding Rows To DataFrames.srt 11KB
  438. 14. Appendix A - Rapid-Fire Python Fundamentals/3. Variables.srt 11KB
  439. 10. Handling Date And Time/19. Upsampling And Interpolation.srt 11KB
  440. Sources/regions.csv 11KB
  441. 10. Handling Date And Time/20. What About asfreq().srt 11KB
  442. 5. DataFrames In Depth/27. BONUS - Methods And Axes With fillna().srt 11KB
  443. 11. Regex And Text Manipulation/8. String Splitting And Concatenation.srt 11KB
  444. 14. Appendix A - Rapid-Fire Python Fundamentals/17. Controlling Flow if, else, And elif.srt 11KB
  445. 3. Series Methods And Handling/6. Accessing And Counting NAs.srt 11KB
  446. 5. DataFrames In Depth/38. View vs Copy.srt 11KB
  447. 2. Series At A Glance/19. BONUS Using Callables With .loc And .iloc.srt 11KB
  448. 14. Appendix A - Rapid-Fire Python Fundamentals/15. Dictionary Keys And Values.srt 11KB
  449. 4. Working With DataFrames/31. BONUS - Min, Max and Idx[MinMax], And Good Foods.srt 10KB
  450. 14. Appendix A - Rapid-Fire Python Fundamentals/11. List Methods And Functions.srt 10KB
  451. 4. Working With DataFrames/28. Filtering in 2D.srt 10KB
  452. 7. Going MultiDimensional/12. The Anatomy Of A MultiIndex Object.srt 10KB
  453. 8. GroupBy And Aggregates/15. Fine-tuned Aggregates.srt 10KB
  454. 6. Working With Multiple DataFrames/16. One-to-One and One-to-Many Joins.srt 10KB
  455. 10. Handling Date And Time/6. Performant Datetimes With Numpy.srt 10KB
  456. 3. Series Methods And Handling/2. Reading In Data With read_csv().srt 10KB
  457. 14. Appendix A - Rapid-Fire Python Fundamentals/7. Strings.srt 10KB
  458. 7. Going MultiDimensional/6. Indexing Hierarchical DataFrames.srt 10KB
  459. 2. Series At A Glance/17. Boolean Masks And The .loc Indexer.srt 10KB
  460. 7. Going MultiDimensional/11. Solution.srt 10KB
  461. 12. Visualizing Data/9. Other Visualization Options.srt 10KB
  462. 7. Going MultiDimensional/17. More MultiIndex Methods.srt 10KB
  463. 7. Going MultiDimensional/24. Solution.srt 10KB
  464. 5. DataFrames In Depth/39. Adding DataFrame Columns.srt 10KB
  465. 13. Data Formats And IO/4. Reading Excel.srt 10KB
  466. 14. Appendix A - Rapid-Fire Python Fundamentals/24. List Comprehensions.srt 10KB
  467. 11. Regex And Text Manipulation/9. More Split Parameters.srt 10KB
  468. 12. Visualizing Data/12. Solution.srt 10KB
  469. 5. DataFrames In Depth/12. Fancy Indexing With lookup().srt 10KB
  470. 4. Working With DataFrames/18. Solution.srt 10KB
  471. 4. Working With DataFrames/14. DataFrame Extraction by Position.srt 10KB
  472. 3. Series Methods And Handling/32. Solution III - Z-scores.srt 10KB
  473. Sources/folks.xlsx 9KB
  474. 10. Handling Date And Time/18. Resampling Timeseries.srt 9KB
  475. 8. GroupBy And Aggregates/18. GroupBy Transformations.srt 9KB
  476. 6. Working With Multiple DataFrames/17. Many-to-Many Joins.srt 9KB
  477. 3. Series Methods And Handling/13. Descriptive Statistics.srt 9KB
  478. 10. Handling Date And Time/14. DateTimeIndex Attribute Accessors.srt 9KB
  479. 3. Series Methods And Handling/22. Series Arithmetics And fill_value().srt 9KB
  480. 11. Regex And Text Manipulation/15. Text Replacement.srt 9KB
  481. 6. Working With Multiple DataFrames/5. Enforcing Unique Indices.srt 9KB
  482. 4. Working With DataFrames/25. BONUS - dropna() With Subset.srt 9KB
  483. 4. Working With DataFrames/9. BONUS - Sampling With Replacement Or Weights.srt 9KB
  484. 14. Appendix A - Rapid-Fire Python Fundamentals/26. Function Arguments Positional vs Keyword.srt 9KB
  485. 5. DataFrames In Depth/37. The SettingWithCopy Warning.srt 9KB
  486. 4. Working With DataFrames/23. The rename() Method.srt 9KB
  487. 6. Working With Multiple DataFrames/3. Concatenating DataFrames.srt 9KB
  488. 13. Data Formats And IO/10. Solution.srt 9KB
  489. 4. Working With DataFrames/29. DataFrame Sorting.srt 9KB
  490. 6. Working With Multiple DataFrames/4. The Duplicated Index Issue.srt 9KB
  491. 4. Working With DataFrames/12. Changing The Index.srt 9KB
  492. 11. Regex And Text Manipulation/3. String Methods In Python.srt 9KB
  493. 2. Series At A Glance/13. Extracting By Index Position.srt 9KB
  494. 14. Appendix A - Rapid-Fire Python Fundamentals/10. Lists vs. Strings.srt 9KB
  495. 9. Reshaping With Pivots/7. BONUS The Problem With Average Percentage.srt 9KB
  496. 14. Appendix A - Rapid-Fire Python Fundamentals/4. Arithmetic And Augmented Assignment Operators.srt 9KB
  497. 5. DataFrames In Depth/26. Dropping And Filling DataFrame NAs.srt 9KB
  498. 8. GroupBy And Aggregates/19. BONUS - There's Also apply().srt 9KB
  499. 2. Series At A Glance/7. Index And RangeIndex.srt 8KB
  500. 9. Reshaping With Pivots/3. Pivoting Data.srt 8KB
  501. 14. Appendix A - Rapid-Fire Python Fundamentals/8. Methods.srt 8KB
  502. 5. DataFrames In Depth/7. Combining Conditions.srt 8KB
  503. 6. Working With Multiple DataFrames/21. Solution.srt 8KB
  504. 10. Handling Date And Time/16. Shifting Dates With pd.DateOffset.srt 8KB
  505. 11. Regex And Text Manipulation/7. Strips And Whitespace.srt 8KB
  506. 11. Regex And Text Manipulation/13. Masking With String Methods.srt 8KB
  507. 5. DataFrames In Depth/25. Null Values In DataFrames.srt 8KB
  508. 3. Series Methods And Handling/15. mode() And value_counts().srt 8KB
  509. 4. Working With DataFrames/13. Extracting From DataFrames By Label.srt 8KB
  510. 13. Data Formats And IO/6. BONUS Introduction To Pickling.srt 8KB
  511. 5. DataFrames In Depth/29. Solution.srt 8KB
  512. 2. Series At A Glance/14. Accessing Elements By Label.srt 8KB
  513. 8. GroupBy And Aggregates/16. Named Aggregations.srt 8KB
  514. 14. Appendix A - Rapid-Fire Python Fundamentals/21. While Loops.srt 8KB
  515. 14. Appendix A - Rapid-Fire Python Fundamentals/9. Containers I Lists.srt 8KB
  516. 5. DataFrames In Depth/36. Setting DataFrame Values.srt 8KB
  517. 7. Going MultiDimensional/19. The Flipside unstack().srt 8KB
  518. 11. Regex And Text Manipulation/6. Finding Characters And Words.srt 8KB
  519. 15. Appendix B - Going Local Installation And Setup/1. Installing Anaconda And Python - Windows.srt 8KB
  520. 5. DataFrames In Depth/13. Sorting By Index Or Column.srt 8KB
  521. 7. Going MultiDimensional/15. Removing MultiIndex Levels.srt 8KB
  522. 7. Going MultiDimensional/16. MultiIndex sort_index().srt 8KB
  523. 5. DataFrames In Depth/10. Solution.srt 8KB
  524. 4. Working With DataFrames/16. BONUS - The get_loc() Method.srt 7KB
  525. 4. Working With DataFrames/36. Solution.srt 7KB
  526. 4. Working With DataFrames/27. Part III Removing Units From Values.srt 7KB
  527. 4. Working With DataFrames/20. The astype() Method.srt 7KB
  528. 10. Handling Date And Time/17. BONUS Timedeltas And Absolute Time.srt 7KB
  529. 14. Appendix A - Rapid-Fire Python Fundamentals/28. Importing Modules.srt 7KB
  530. 4. Working With DataFrames/32. DataFrame nlargest() And nsmallest().srt 7KB
  531. 5. DataFrames In Depth/43. Solution.srt 7KB
  532. 7. Going MultiDimensional/18. Reshaping With stack().srt 7KB
  533. 1. Introduction/5. Cloud vs Local.srt 7KB
  534. 11. Regex And Text Manipulation/12. Slicing Substrings.srt 7KB
  535. 9. Reshaping With Pivots/6. The pivot_table().srt 7KB
  536. 4. Working With DataFrames/30. Using Series between() With DataFrames.srt 7KB
  537. 14. Appendix A - Rapid-Fire Python Fundamentals/27. Lambdas.srt 7KB
  538. 7. Going MultiDimensional/9. Cross Sections With xs().srt 7KB
  539. 10. Handling Date And Time/15. Creating Date Ranges.srt 7KB
  540. 7. Going MultiDimensional/13. Adding Another Level.srt 7KB
  541. 2. Series At A Glance/4. What’s In The Data.srt 7KB
  542. 6. Working With Multiple DataFrames/12. The merge() Method.srt 7KB
  543. 14. Appendix A - Rapid-Fire Python Fundamentals/19. For Loops.srt 7KB
  544. 10. Handling Date And Time/23. Solution.srt 7KB
  545. 4. Working With DataFrames/10. BONUS - How Are Random Numbers Generated.srt 7KB
  546. 14. Appendix A - Rapid-Fire Python Fundamentals/14. Containers IV Dictionaries.srt 7KB
  547. 9. Reshaping With Pivots/5. What About Aggregates.srt 7KB
  548. 8. GroupBy And Aggregates/14. MultiIndex Grouping.srt 7KB
  549. 5. DataFrames In Depth/20. Removing Duplicates.srt 7KB
  550. 8. GroupBy And Aggregates/17. The filter() Method.srt 7KB
  551. 6. Working With Multiple DataFrames/2. Introducing (Five) New Datasets.srt 7KB
  552. 9. Reshaping With Pivots/4. Undoing Pivots.srt 7KB
  553. 2. Series At A Glance/21. Selection Recap.srt 7KB
  554. 4. Working With DataFrames/34. Solution.srt 7KB
  555. 4. Working With DataFrames/7. Some Cleanup Removing The Duplicated Index.srt 7KB
  556. 2. Series At A Glance/23. Solution.srt 7KB
  557. 3. Series Methods And Handling/16. idxmax() And idxmin().srt 6KB
  558. 9. Reshaping With Pivots/13. Solution.srt 6KB
  559. 14. Appendix A - Rapid-Fire Python Fundamentals/20. The range() Immutable Sequence.srt 6KB
  560. 8. GroupBy And Aggregates/4. Conditional Aggregates.srt 6KB
  561. 10. Handling Date And Time/9. Date Parsing And DatetimeIndex.srt 6KB
  562. 6. Working With Multiple DataFrames/14. Inner vs Outer Joins.srt 6KB
  563. 14. Appendix A - Rapid-Fire Python Fundamentals/6. Booleans And Comparison Operators.srt 6KB
  564. 8. GroupBy And Aggregates/11. Solution.srt 6KB
  565. 8. GroupBy And Aggregates/3. Simple Aggregations Review.srt 6KB
  566. 2. Series At A Glance/8. Series And Index Names.srt 6KB
  567. 6. Working With Multiple DataFrames/18. Merging By Index.srt 6KB
  568. 8. GroupBy And Aggregates/21. Solution.srt 6KB
  569. 2. Series At A Glance/12. The head() And tail() Methods.srt 6KB
  570. 3. Series Methods And Handling/4. Unique Values And Series Monotonicity.srt 6KB
  571. 10. Handling Date And Time/7. The Pandas Timestamp.srt 6KB
  572. 5. DataFrames In Depth/35. Solution.srt 6KB
  573. 7. Going MultiDimensional/2. Introducing New Data.srt 6KB
  574. 13. Data Formats And IO/7. Pickles In Pandas.srt 6KB
  575. 7. Going MultiDimensional/14. Shuffling Levels.srt 6KB
  576. 10. Handling Date And Time/5. From Datetime To String.srt 6KB
  577. 5. DataFrames In Depth/24. BONUS - A Sophisticated Alternative.srt 6KB
  578. 6. Working With Multiple DataFrames/9. Concat On Different Columns.srt 6KB
  579. 4. Working With DataFrames/15. Single Value Access With .at And .iat.srt 6KB
  580. 14. Appendix A - Rapid-Fire Python Fundamentals/22. Break And Continue.srt 6KB
  581. 3. Series Methods And Handling/24. Cumulative Operations.srt 6KB
  582. 8. GroupBy And Aggregates/9. BONUS - Series groupby().srt 6KB
  583. 3. Series Methods And Handling/7. BONUS Another Approach.srt 6KB
  584. 2. Series At A Glance/20. Selecting With .get().srt 6KB
  585. 14. Appendix A - Rapid-Fire Python Fundamentals/12. Containers II Tuples.srt 6KB
  586. 10. Handling Date And Time/8. Our Dataset Brent Prices.srt 6KB
  587. 3. Series Methods And Handling/17. Sorting With sort_values().srt 6KB
  588. 10. Handling Date And Time/11. Indexing Dates.srt 6KB
  589. 13. Data Formats And IO/2. Reading JSON.srt 6KB
  590. 9. Reshaping With Pivots/9. Adding Margins.srt 6KB
  591. 8. GroupBy And Aggregates/6. The groupby() Method.srt 6KB
  592. 4. Working With DataFrames/3. Creating A DataFrame.srt 5KB
  593. 3. Series Methods And Handling/3. Series Sizing With .size, .shape, And len().srt 5KB
  594. 9. Reshaping With Pivots/2. New Data New York City SAT Scores.srt 5KB
  595. 8. GroupBy And Aggregates/13. Handpicking Subgroups.srt 5KB
  596. 6. Working With Multiple DataFrames/6. BONUS - Creating Multiple Indices With concat().srt 5KB
  597. 5. DataFrames In Depth/8. Conditions As Variables.srt 5KB
  598. 4. Working With DataFrames/5. The info() Method.srt 5KB
  599. 6. Working With Multiple DataFrames/7. Column Axis Concatenation.srt 5KB
  600. 5. DataFrames In Depth/23. BONUS - Another Way pop().srt 5KB
  601. 1. Introduction/6. Hello, Python.srt 5KB
  602. 10. Handling Date And Time/4. Even Better dateutil.srt 5KB
  603. 3. Series Methods And Handling/23. BONUS Calculating Variance And Standard Deviation.srt 5KB
  604. 6. Working With Multiple DataFrames/13. The left_on And right_on Params.srt 5KB
  605. 3. Series Methods And Handling/12. Dropping And Filling NAs.srt 5KB
  606. 7. Going MultiDimensional/3. Index And RangeIndex.srt 5KB
  607. 8. GroupBy And Aggregates/5. The Split-Apply-Combine Pattern.srt 5KB
  608. 5. DataFrames In Depth/41. BONUS - How Are DataFrames Stored In Memory.srt 5KB
  609. 14. Appendix A - Rapid-Fire Python Fundamentals/16. Membership Operators.srt 5KB
  610. 4. Working With DataFrames/11. DataFrame Axes.srt 5KB
  611. 11. Regex And Text Manipulation/11. Solution.srt 5KB
  612. 7. Going MultiDimensional/8. BONUS - Use With pd.IndexSlice!.srt 5KB
  613. 7. Going MultiDimensional/5. MultiIndex From read_csv().srt 5KB
  614. 4. Working With DataFrames/8. The sample() Method.srt 5KB
  615. 13. Data Formats And IO/8. The Many Other Formats.srt 5KB
  616. 2. Series At A Glance/2. What Is A Series.srt 5KB
  617. 9. Reshaping With Pivots/11. Applying Multiple Functions.srt 5KB
  618. 2. Series At A Glance/10. Solution.srt 5KB
  619. 3. Series Methods And Handling/26. Series Iteration.srt 5KB
  620. 10. Handling Date And Time/10. A Cool Shorcut read_csv() With parse_dates.srt 5KB
  621. 8. GroupBy And Aggregates/8. Customizing Index To Group Mappings.srt 5KB
  622. 7. Going MultiDimensional/4. Creating A MultiIndex.srt 5KB
  623. 4. Working With DataFrames/6. Reading In Nutrition Data.srt 5KB
  624. 5. DataFrames In Depth/2. Introducing A New Dataset.srt 5KB
  625. 2. Series At A Glance/16. Using Dot Notation.srt 5KB
  626. 15. Appendix B - Going Local Installation And Setup/3. Installing Anaconda And Python - Linux.srt 4KB
  627. 8. GroupBy And Aggregates/7. The DataFrameGroupBy Object.srt 4KB
  628. 14. Appendix A - Rapid-Fire Python Fundamentals/18. Truth Value Of Non-booleans.srt 4KB
  629. 6. Working With Multiple DataFrames/15. Left vs Right Joins.srt 4KB
  630. 5. DataFrames In Depth/18. Solution.srt 4KB
  631. 2. Series At A Glance/18. Extracting By Position With .iloc.srt 4KB
  632. 5. DataFrames In Depth/16. 15. BONUS - Please Avoid Sorting Like This.srt 4KB
  633. 14. Appendix A - Rapid-Fire Python Fundamentals/23. Zipping Iterables.srt 4KB
  634. 3. Series Methods And Handling/25. Pairwise Differences With diff().srt 4KB
  635. 11. Regex And Text Manipulation/4. Vectorized String Operations In Pandas.srt 4KB
  636. 5. DataFrames In Depth/3. Quick Review Indexing With Boolean Masks.srt 4KB
  637. 11. Regex And Text Manipulation/20. BONUS What's The Point Of re.compile().srt 4KB
  638. 3. Series Methods And Handling/31. Solution II - Mean, Median, And Standard Deviation.srt 4KB
  639. 8. GroupBy And Aggregates/12. Iterating Through Groups.srt 4KB
  640. Sources/drinks (1).csv 4KB
  641. Sources/drinks (2).csv 4KB
  642. Sources/drinks.csv 4KB
  643. 3. Series Methods And Handling/19. Sorting With sort_index().srt 4KB
  644. 2. Series At A Glance/15. BONUS The add_prefix() And add_suffix() Methods.srt 4KB
  645. 7. Going MultiDimensional/22. BONUS - What About Panels.srt 4KB
  646. 2. Series At A Glance/6. BONUS What Is dtype('o'), Really.srt 4KB
  647. 10. Handling Date And Time/13. Solution.srt 4KB
  648. 12. Visualizing Data/10. BONUS Data Ink And Chartjunk.srt 4KB
  649. 4. Working With DataFrames/19. More Cleanup Going Numeric.srt 4KB
  650. 3. Series Methods And Handling/9. BONUS Booleans Are Literally Numbers In Python.srt 4KB
  651. 8. GroupBy And Aggregates/2. New Data Game Sales.srt 4KB
  652. 1. Introduction/3. Anaconda.srt 4KB
  653. 11. Regex And Text Manipulation/2. Our Data Boston Marathon Runners.srt 4KB
  654. 3. Series Methods And Handling/11. Solution.srt 4KB
  655. 11. Regex And Text Manipulation/5. Case Operations.srt 4KB
  656. 9. Reshaping With Pivots/10. MultiIndex Pivot Tables.srt 4KB
  657. 2. Series At A Glance/11. Another Solution.srt 4KB
  658. 12. Visualizing Data/2. The Art Of Data Visualization.srt 4KB
  659. 5. DataFrames In Depth/22. BONUS - Removing Columns.srt 4KB
  660. 13. Data Formats And IO/9. Skill Challenge.srt 4KB
  661. 5. DataFrames In Depth/21. Removing DataFrame Rows.srt 3KB
  662. 2. Series At A Glance/3. Parameters vs Arguments.srt 3KB
  663. 3. Series Methods And Handling/18. nlargest() And nsmallest().srt 3KB
  664. 3. Series Methods And Handling/8. The Other Side notnull() And notna().srt 3KB
  665. 7. Going MultiDimensional/21. An Easier Way transpose().srt 3KB
  666. 3. Series Methods And Handling/29. Skill Challenge.srt 3KB
  667. 6. Working With Multiple DataFrames/19. The join() Method.srt 3KB
  668. 6. Working With Multiple DataFrames/8. The append() Method A Special Case Of concat().srt 3KB
  669. 5. DataFrames In Depth/1. Section Intro.srt 3KB
  670. 14. Appendix A - Rapid-Fire Python Fundamentals/2. Data Types.srt 3KB
  671. 9. Reshaping With Pivots/8. Replicating Pivot Tables With GroupBy.srt 3KB
  672. Sources/liberal_arts.csv 3KB
  673. 3. Series Methods And Handling/5. The count() Method.srt 3KB
  674. 2. Series At A Glance/9. Skill Challenge.srt 3KB
  675. 5. DataFrames In Depth/15. BONUS - Another Way.srt 3KB
  676. 5. DataFrames In Depth/34. Skill Challenge.srt 3KB
  677. 3. Series Methods And Handling/30. Solution I - Reading Data.srt 3KB
  678. 15. Appendix B - Going Local Installation And Setup/2. Installing Anaconda And Python - Mac.srt 3KB
  679. 2. Series At A Glance/5. The .dtype Attribute.srt 3KB
  680. 3. Series Methods And Handling/14. The describe() Method.srt 3KB
  681. 3. Series Methods And Handling/21. Solution.srt 2KB
  682. 1. Introduction/2. Pandas Is Not Single.srt 2KB
  683. 3. Series Methods And Handling/1. Section Intro.srt 2KB
  684. 4. Working With DataFrames/35. Another Skill Challenge.srt 2KB
  685. 2. Series At A Glance/22. Skill Challenge.srt 2KB
  686. 7. Going MultiDimensional/1. Section Intro.srt 2KB
  687. 14. Appendix A - Rapid-Fire Python Fundamentals/1. Section Intro.srt 2KB
  688. 4. Working With DataFrames/1. Section Intro.srt 2KB
  689. 11. Regex And Text Manipulation/1. Section Intro.srt 2KB
  690. 6. Working With Multiple DataFrames/10. Skill Challenge.srt 2KB
  691. 12. Visualizing Data/11. Skill Challenge.srt 2KB
  692. 5. DataFrames In Depth/42. Skill Challenge.srt 2KB
  693. 7. Going MultiDimensional/23. Skill Challenge.srt 2KB
  694. 11. Regex And Text Manipulation/22. Skill Challenge.srt 2KB
  695. 5. DataFrames In Depth/28. Skill Challenge.srt 2KB
  696. 1. Introduction/1. Course Structure.srt 2KB
  697. 10. Handling Date And Time/22. Skill Challenge.srt 2KB
  698. 4. Working With DataFrames/17. Skill Challenge.srt 2KB
  699. 4. Working With DataFrames/33. Skill Challenge.srt 2KB
  700. 12. Visualizing Data/1. Section Intro.srt 2KB
  701. 7. Going MultiDimensional/10. Skill Challenge.srt 2KB
  702. 9. Reshaping With Pivots/12. Skill Challenge.srt 2KB
  703. 10. Handling Date And Time/1. Section Intro.srt 2KB
  704. 9. Reshaping With Pivots/1. Section Intro.srt 2KB
  705. Sources/eng.csv 2KB
  706. 8. GroupBy And Aggregates/20. Skill Challenge.srt 2KB
  707. 6. Working With Multiple DataFrames/1. Section Intro.srt 2KB
  708. 5. DataFrames In Depth/9. Skill Challenge.srt 1KB
  709. 3. Series Methods And Handling/10. Skill Challenge.srt 1KB
  710. 8. GroupBy And Aggregates/1. Section Intro.srt 1KB
  711. 5. DataFrames In Depth/17. Skill Challenge.srt 1KB
  712. Sources/portfolio.zip 1KB
  713. 6. Working With Multiple DataFrames/20. Skill Challenge.srt 1KB
  714. 11. Regex And Text Manipulation/10. Skill Challenge.srt 1KB
  715. 2. Series At A Glance/1. Section Intro.srt 1KB
  716. 10. Handling Date And Time/12. Skill Challenge.srt 1KB
  717. 3. Series Methods And Handling/20. Skill Challenge.srt 1KB
  718. 8. GroupBy And Aggregates/10. Skill Challenge.srt 1KB
  719. 13. Data Formats And IO/1. Section Intro.srt 1KB
  720. Sources/ivies.csv 548B
  721. Sources/folks.json 244B
  722. 0. Websites you may like/[CourseClub.Me].url 122B
  723. 12. Visualizing Data/[CourseClub.Me].url 122B
  724. 5. DataFrames In Depth/[CourseClub.Me].url 122B
  725. [CourseClub.Me].url 122B
  726. 0. Websites you may like/[GigaCourse.Com].url 49B
  727. 12. Visualizing Data/[GigaCourse.Com].url 49B
  728. 5. DataFrames In Depth/[GigaCourse.Com].url 49B
  729. [GigaCourse.Com].url 49B