[] Udemy - Artificial Intelligence II - Neural Networks in Java 收录时间:2019-05-17 05:16:29 文件大小:818MB 下载次数:93 最近下载:2021-01-23 00:08:24 磁力链接: magnet:?xt=urn:btih:ad273397f7b43d6079472c87a6b97aa142aebb7d 立即下载 复制链接 文件列表 2. Neural Networks Introduction/2. Modeling human brain.mp4 94MB 11. Optical Character Recognition (OCR)/5. OCR with neural network.mp4 44MB 10. Classification - Iris Dataset/3. Testing the neural network.mp4 34MB 4. Neural Networks With Backpropagation Theory/2. Optimization - cost function.mp4 26MB 4. Neural Networks With Backpropagation Theory/8. Gradient calculation I - output layer.mp4 20MB 4. Neural Networks With Backpropagation Theory/4. Simplified feedforward network.mp4 19MB 2. Neural Networks Introduction/1. Axons and neurons in the human brain.mp4 19MB 3. Hopfield Neural Network/7. Hopfield network implementation II - matrix operations.mp4 19MB 3. Hopfield Neural Network/8. Hopfield network implementation III - network.mp4 19MB 4. Neural Networks With Backpropagation Theory/13. Resilient propagation.mp4 19MB 4. Neural Networks With Backpropagation Theory/1. Feedforward neural networks.mp4 18MB 7. Backpropagation Implementation/3. Backpropagation implementation II - NeuralNetwork.mp4 18MB 8. Logical Operators/2. Running the neural network AND.mp4 18MB 2. Neural Networks Introduction/4. Artificial neurons - the model.mp4 17MB 7. Backpropagation Implementation/5. Backpropagation implementation IV - run.mp4 16MB 7. Backpropagation Implementation/6. Backpropagation implementation V - train.mp4 16MB 4. Neural Networks With Backpropagation Theory/5. Feedforward neural network topology.mp4 15MB 2. Neural Networks Introduction/5. Artificial neurons - activations functions.mp4 14MB 4. Neural Networks With Backpropagation Theory/7. Error calculation.mp4 14MB 6. Single Perceptron Model/4. Perceptron model implementation III.mp4 14MB 9. Clustering/2. Clustering with neural networks II.mp4 13MB 4. Neural Networks With Backpropagation Theory/6. The learning algorithm.mp4 13MB 3. Hopfield Neural Network/5. Hopfield neural network example.mp4 13MB 7. Backpropagation Implementation/1. Structure of the feedforward network.mp4 13MB 6. Single Perceptron Model/3. Perceptron model implementation II.mp4 13MB 4. Neural Networks With Backpropagation Theory/10. Backpropagation.mp4 13MB 7. Backpropagation Implementation/4. Backpropagation implementation III - Layer.mp4 12MB 3. Hopfield Neural Network/1. Hopfield neural network introduction.mp4 12MB 3. Hopfield Neural Network/3. Hopfield neural network training and learning.mp4 12MB 6. Single Perceptron Model/2. Perceptron model implementation I.mp4 12MB 2. Neural Networks Introduction/7. Artificial neurons - an example.mp4 11MB 2. Neural Networks Introduction/8. Neural networks - the big picture.mp4 11MB 7. Backpropagation Implementation/2. Backpropagation implementation I - activation function.mp4 10MB 11. Optical Character Recognition (OCR)/3. Transform an image into numerical data.mp4 10MB 4. Neural Networks With Backpropagation Theory/15. Applications of neural networks II - stock market forecast.mp4 10MB 4. Neural Networks With Backpropagation Theory/16. Deep learning.mp4 9MB 3. Hopfield Neural Network/6. Hopfield network implementation I - utils.mp4 9MB 3. Hopfield Neural Network/2. Hopfield network energy.mp4 9MB 4. Neural Networks With Backpropagation Theory/9. Gradient calculation II - hidden layer.mp4 9MB 4. Neural Networks With Backpropagation Theory/14. Applications of neural networks I - character recognition.mp4 9MB 3. Hopfield Neural Network/9. Hopfield network implementation IV - running the application.mp4 9MB 8. Logical Operators/3. Running the neural network OR.mp4 8MB 10. Classification - Iris Dataset/2. Constructing the neural network.mp4 8MB 11. Optical Character Recognition (OCR)/1. Optical character recognition theory.mp4 8MB 11. Optical Character Recognition (OCR)/4. Creating the datasets.mp4 8MB 3. Hopfield Neural Network/4. Hopfield neural network problems.mp4 7MB 10. Classification - Iris Dataset/1. About the Iris dataset.mp4 7MB 1. Introduction/1. Introduction.mp4 7MB 2. Neural Networks Introduction/3. Learning paradigms.mp4 7MB 6. Single Perceptron Model/6. Conclusion linearity and hidden layers.mp4 7MB 8. Logical Operators/4. Running the neural network XOR.mp4 6MB 5. Types of Neural Networks/1. Types of neural networks.mp4 5MB 2. Neural Networks Introduction/9. Applications of neural networks.mp4 5MB 11. Optical Character Recognition (OCR)/2. Installing paint.net.mp4 5MB 9. Clustering/1. Clustering with neural networks I.mp4 5MB 6. Single Perceptron Model/1. Perceptron model training.mp4 5MB 4. Neural Networks With Backpropagation Theory/11. Backpropagation II.mp4 5MB 8. Logical Operators/1. Logical operators introduction.mp4 5MB 6. Single Perceptron Model/5. Trying to solve XOR problem.mp4 5MB 12. Course Materials (DOWNLOADS)/1.1 neural_networks.zip.zip 2MB 4. Neural Networks With Backpropagation Theory/2. Optimization - cost function.vtt 12KB 4. Neural Networks With Backpropagation Theory/8. Gradient calculation I - output layer.vtt 9KB 2. Neural Networks Introduction/1. Axons and neurons in the human brain.vtt 9KB 4. Neural Networks With Backpropagation Theory/4. Simplified feedforward network.vtt 9KB 4. Neural Networks With Backpropagation Theory/1. Feedforward neural networks.vtt 9KB 2. Neural Networks Introduction/2. Modeling human brain.vtt 8KB 7. Backpropagation Implementation/3. Backpropagation implementation II - NeuralNetwork.vtt 8KB 8. Logical Operators/2. Running the neural network AND.vtt 8KB 2. Neural Networks Introduction/4. Artificial neurons - the model.vtt 7KB 3. Hopfield Neural Network/7. Hopfield network implementation II - matrix operations.vtt 7KB 3. Hopfield Neural Network/8. Hopfield network implementation III - network.vtt 7KB 7. Backpropagation Implementation/5. Backpropagation implementation IV - run.vtt 7KB 10. Classification - Iris Dataset/3. Testing the neural network.vtt 7KB 7. Backpropagation Implementation/6. Backpropagation implementation V - train.vtt 7KB 11. Optical Character Recognition (OCR)/5. OCR with neural network.vtt 7KB 7. Backpropagation Implementation/1. Structure of the feedforward network.vtt 7KB 4. Neural Networks With Backpropagation Theory/5. Feedforward neural network topology.vtt 7KB 2. Neural Networks Introduction/5. Artificial neurons - activations functions.vtt 7KB 4. Neural Networks With Backpropagation Theory/7. Error calculation.vtt 7KB 3. Hopfield Neural Network/5. Hopfield neural network example.vtt 6KB 4. Neural Networks With Backpropagation Theory/6. The learning algorithm.vtt 6KB 4. Neural Networks With Backpropagation Theory/10. Backpropagation.vtt 6KB 6. Single Perceptron Model/4. Perceptron model implementation III.vtt 6KB 6. Single Perceptron Model/3. Perceptron model implementation II.vtt 6KB 3. Hopfield Neural Network/3. Hopfield neural network training and learning.vtt 6KB 3. Hopfield Neural Network/1. Hopfield neural network introduction.vtt 6KB 9. Clustering/2. Clustering with neural networks II.vtt 5KB 4. Neural Networks With Backpropagation Theory/13. Resilient propagation.vtt 5KB 13. DISCOUNT FOR OTHER COURSES!/1. 90% OFF For Other Courses.html 5KB 7. Backpropagation Implementation/4. Backpropagation implementation III - Layer.vtt 5KB 2. Neural Networks Introduction/8. Neural networks - the big picture.vtt 5KB 6. Single Perceptron Model/2. Perceptron model implementation I.vtt 5KB 2. Neural Networks Introduction/7. Artificial neurons - an example.vtt 5KB 11. Optical Character Recognition (OCR)/3. Transform an image into numerical data.vtt 5KB 4. Neural Networks With Backpropagation Theory/15. Applications of neural networks II - stock market forecast.vtt 5KB 4. Neural Networks With Backpropagation Theory/16. Deep learning.vtt 5KB 7. Backpropagation Implementation/2. Backpropagation implementation I - activation function.vtt 5KB 3. Hopfield Neural Network/2. Hopfield network energy.vtt 4KB 4. Neural Networks With Backpropagation Theory/14. Applications of neural networks I - character recognition.vtt 4KB 5. Types of Neural Networks/1. Types of neural networks.vtt 4KB 3. Hopfield Neural Network/9. Hopfield network implementation IV - running the application.vtt 4KB 4. Neural Networks With Backpropagation Theory/9. Gradient calculation II - hidden layer.vtt 4KB 3. Hopfield Neural Network/6. Hopfield network implementation I - utils.vtt 4KB 11. Optical Character Recognition (OCR)/1. Optical character recognition theory.vtt 4KB 8. Logical Operators/3. Running the neural network OR.vtt 4KB 1. Introduction/1. Introduction.vtt 4KB 3. Hopfield Neural Network/4. Hopfield neural network problems.vtt 4KB 6. Single Perceptron Model/6. Conclusion linearity and hidden layers.vtt 3KB 2. Neural Networks Introduction/3. Learning paradigms.vtt 3KB 10. Classification - Iris Dataset/1. About the Iris dataset.vtt 3KB 10. Classification - Iris Dataset/2. Constructing the neural network.vtt 3KB 11. Optical Character Recognition (OCR)/2. Installing paint.net.vtt 3KB 8. Logical Operators/4. Running the neural network XOR.vtt 3KB 9. Clustering/1. Clustering with neural networks I.vtt 2KB 2. Neural Networks Introduction/9. Applications of neural networks.vtt 2KB 11. Optical Character Recognition (OCR)/4. Creating the datasets.vtt 2KB 6. Single Perceptron Model/1. Perceptron model training.vtt 2KB 8. Logical Operators/1. Logical operators introduction.vtt 2KB 4. Neural Networks With Backpropagation Theory/11. Backpropagation II.vtt 2KB 6. Single Perceptron Model/5. Trying to solve XOR problem.vtt 2KB 4. Neural Networks With Backpropagation Theory/3. ARTICLE optimization algorithms.html 230B 4. Neural Networks With Backpropagation Theory/12. ARTICLE derivation of backpropagation.html 171B 2. Neural Networks Introduction/6. ARTICLE activation functions.html 169B [FreeCourseLab.com].url 126B 12. Course Materials (DOWNLOADS)/1. Course materials.html 60B