GetFreeCourses.Me-Udemy-Cutting-Edge AI Deep Reinforcement Learning in Python
- 收录时间:2020-02-23 17:30:33
- 文件大小:3GB
- 下载次数:94
- 最近下载:2021-01-08 14:14:38
- 磁力链接:
-
文件列表
- 6. Appendix FAQ/2. Windows-Focused Environment Setup 2018.mp4 194MB
- 4. DDPG (Deep Deterministic Policy Gradient)/5. DDPG Code (part 1).mp4 194MB
- 3. A2C (Advantage Actor-Critic)/10. A2C.mp4 192MB
- 6. Appendix FAQ/3. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.mp4 167MB
- 5. ES (Evolution Strategies)/7. ES for Flappy Bird in Code.mp4 142MB
- 6. Appendix FAQ/11. What order should I take your courses in (part 2).mp4 139MB
- 3. A2C (Advantage Actor-Critic)/8. Environment Wrappers.mp4 129MB
- 6. Appendix FAQ/4. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.mp4 118MB
- 4. DDPG (Deep Deterministic Policy Gradient)/4. MuJoCo.mp4 110MB
- 2. Review of Fundamental Reinforcement Learning Concepts/3. Markov Decision Processes (MDPs).mp4 109MB
- 5. ES (Evolution Strategies)/2. ES Theory.mp4 108MB
- 6. Appendix FAQ/10. What order should I take your courses in (part 1).mp4 99MB
- 3. A2C (Advantage Actor-Critic)/2. A2C Theory (part 1).mp4 96MB
- 6. Appendix FAQ/6. How to Code by Yourself (part 1).mp4 83MB
- 4. DDPG (Deep Deterministic Policy Gradient)/3. DDPG Theory.mp4 81MB
- 2. Review of Fundamental Reinforcement Learning Concepts/5. Temporal Difference Learning (TD).mp4 79MB
- 6. Appendix FAQ/8. Proof that using Jupyter Notebook is the same as not using it.mp4 78MB
- 2. Review of Fundamental Reinforcement Learning Concepts/2. The Explore-Exploit Dilemma.mp4 72MB
- 3. A2C (Advantage Actor-Critic)/7. Multiple Processes.mp4 70MB
- 5. ES (Evolution Strategies)/8. ES for MuJoCo in Code.mp4 69MB
- 4. DDPG (Deep Deterministic Policy Gradient)/6. DDPG Code (part 2).mp4 65MB
- 3. A2C (Advantage Actor-Critic)/1. A2C Section Introduction.mp4 61MB
- 5. ES (Evolution Strategies)/6. Flappy Bird.mp4 61MB
- 6. Appendix FAQ/7. How to Code by Yourself (part 2).mp4 57MB
- 5. ES (Evolution Strategies)/5. ES for Supervised Learning.mp4 55MB
- 1. Welcome/2. Outline.mp4 54MB
- 5. ES (Evolution Strategies)/3. Notes on Evolution Strategies.mp4 53MB
- 2. Review of Fundamental Reinforcement Learning Concepts/6. OpenAI Gym Warmup.mp4 50MB
- 5. ES (Evolution Strategies)/4. ES for Optimizing a Function.mp4 47MB
- 3. A2C (Advantage Actor-Critic)/9. Convolutional Neural Network.mp4 46MB
- 4. DDPG (Deep Deterministic Policy Gradient)/2. Deep Q-Learning (DQN) Review.mp4 45MB
- 5. ES (Evolution Strategies)/1. ES Section Introduction.mp4 45MB
- 6. Appendix FAQ/5. How to Succeed in this Course (Long Version).mp4 39MB
- 3. A2C (Advantage Actor-Critic)/11. A2C Section Summary.mp4 33MB
- 3. A2C (Advantage Actor-Critic)/3. A2C Theory (part 2).mp4 33MB
- 2. Review of Fundamental Reinforcement Learning Concepts/4. Monte Carlo Methods.mp4 32MB
- 2. Review of Fundamental Reinforcement Learning Concepts/7. Review Section Summary.mp4 31MB
- 1. Welcome/1. Introduction.mp4 30MB
- 5. ES (Evolution Strategies)/9. ES Section Summary.mp4 29MB
- 3. A2C (Advantage Actor-Critic)/6. A2C Code - Rough Sketch.mp4 28MB
- 3. A2C (Advantage Actor-Critic)/5. A2C Demo.mp4 27MB
- 1. Welcome/3. Where to get the code.mp4 24MB
- 4. DDPG (Deep Deterministic Policy Gradient)/1. DDPG Section Introduction.mp4 24MB
- 6. Appendix FAQ/9. Python 2 vs Python 3.mp4 19MB
- 2. Review of Fundamental Reinforcement Learning Concepts/1. Review Section Introduction.mp4 19MB
- 6. Appendix FAQ/1. What is the Appendix.mp4 18MB
- 4. DDPG (Deep Deterministic Policy Gradient)/7. DDPG Section Summary.mp4 18MB
- 3. A2C (Advantage Actor-Critic)/4. A2C Theory (part 3).mp4 14MB
- 6. Appendix FAQ/4. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.vtt 28KB
- 3. A2C (Advantage Actor-Critic)/2. A2C Theory (part 1).vtt 23KB
- 5. ES (Evolution Strategies)/2. ES Theory.vtt 22KB
- 2. Review of Fundamental Reinforcement Learning Concepts/3. Markov Decision Processes (MDPs).vtt 22KB
- 4. DDPG (Deep Deterministic Policy Gradient)/4. MuJoCo.vtt 21KB
- 6. Appendix FAQ/11. What order should I take your courses in (part 2).vtt 20KB
- 4. DDPG (Deep Deterministic Policy Gradient)/3. DDPG Theory.vtt 20KB
- 4. DDPG (Deep Deterministic Policy Gradient)/5. DDPG Code (part 1).vtt 20KB
- 3. A2C (Advantage Actor-Critic)/10. A2C.vtt 20KB
- 6. Appendix FAQ/6. How to Code by Yourself (part 1).vtt 19KB
- 2. Review of Fundamental Reinforcement Learning Concepts/5. Temporal Difference Learning (TD).vtt 19KB
- 6. Appendix FAQ/2. Windows-Focused Environment Setup 2018.vtt 17KB
- 2. Review of Fundamental Reinforcement Learning Concepts/2. The Explore-Exploit Dilemma.vtt 16KB
- 5. ES (Evolution Strategies)/7. ES for Flappy Bird in Code.vtt 16KB
- 6. Appendix FAQ/10. What order should I take your courses in (part 1).vtt 14KB
- 5. ES (Evolution Strategies)/6. Flappy Bird.vtt 14KB
- 3. A2C (Advantage Actor-Critic)/8. Environment Wrappers.vtt 13KB
- 6. Appendix FAQ/5. How to Succeed in this Course (Long Version).vtt 13KB
- 6. Appendix FAQ/3. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.vtt 13KB
- 6. Appendix FAQ/8. Proof that using Jupyter Notebook is the same as not using it.vtt 12KB
- 6. Appendix FAQ/7. How to Code by Yourself (part 2).vtt 11KB
- 4. DDPG (Deep Deterministic Policy Gradient)/2. Deep Q-Learning (DQN) Review.vtt 10KB
- 5. ES (Evolution Strategies)/3. Notes on Evolution Strategies.vtt 10KB
- 3. A2C (Advantage Actor-Critic)/7. Multiple Processes.vtt 10KB
- 1. Welcome/2. Outline.vtt 9KB
- 3. A2C (Advantage Actor-Critic)/1. A2C Section Introduction.vtt 9KB
- 2. Review of Fundamental Reinforcement Learning Concepts/4. Monte Carlo Methods.vtt 8KB
- 2. Review of Fundamental Reinforcement Learning Concepts/7. Review Section Summary.vtt 8KB
- 3. A2C (Advantage Actor-Critic)/6. A2C Code - Rough Sketch.vtt 8KB
- 5. ES (Evolution Strategies)/8. ES for MuJoCo in Code.vtt 8KB
- 3. A2C (Advantage Actor-Critic)/3. A2C Theory (part 2).vtt 8KB
- 3. A2C (Advantage Actor-Critic)/11. A2C Section Summary.vtt 8KB
- 5. ES (Evolution Strategies)/1. ES Section Introduction.vtt 8KB
- 2. Review of Fundamental Reinforcement Learning Concepts/6. OpenAI Gym Warmup.vtt 7KB
- 5. ES (Evolution Strategies)/4. ES for Optimizing a Function.vtt 7KB
- 5. ES (Evolution Strategies)/5. ES for Supervised Learning.vtt 7KB
- 4. DDPG (Deep Deterministic Policy Gradient)/6. DDPG Code (part 2).vtt 6KB
- 3. A2C (Advantage Actor-Critic)/9. Convolutional Neural Network.vtt 6KB
- 5. ES (Evolution Strategies)/9. ES Section Summary.vtt 6KB
- 1. Welcome/3. Where to get the code.vtt 6KB
- 6. Appendix FAQ/9. Python 2 vs Python 3.vtt 5KB
- 4. DDPG (Deep Deterministic Policy Gradient)/7. DDPG Section Summary.vtt 5KB
- 2. Review of Fundamental Reinforcement Learning Concepts/1. Review Section Introduction.vtt 5KB
- 1. Welcome/1. Introduction.vtt 4KB
- 4. DDPG (Deep Deterministic Policy Gradient)/1. DDPG Section Introduction.vtt 4KB
- 3. A2C (Advantage Actor-Critic)/4. A2C Theory (part 3).vtt 3KB
- 6. Appendix FAQ/1. What is the Appendix.vtt 3KB
- 3. A2C (Advantage Actor-Critic)/5. A2C Demo.vtt 2KB
- How you can help GetFreeCourses.Me.txt 182B
- GetFreeCourses.Me.url 116B