Coursera - Introduction to Data Science (2013) 收录时间:2018-03-06 08:07:26 文件大小:4GB 下载次数:279 最近下载:2021-01-08 14:44:24 磁力链接: magnet:?xt=urn:btih:b5e65a014aaba80a0b7e3d0871b8a332f83557f4 立即下载 复制链接 文件列表 virtual machine/Coursera-Data-Science-Ubuntu.ova 2GB soft/TableauDesktop.exe 87MB video-extra/Introduction to JSMapreduce.mp4 49MB video/8 - 2 - Eventual Consistency (1856).mp4 26MB video/1 - 11 - Twitter Assignment Getting Started with Problem 0 and Problem 1.mp4 25MB video/1 - 1 - Appetite Whetting Part 1 (1538).mp4 24MB video/8 - 7 - Example Other Google Systems (1618).mp4 24MB video/8 - 3 - Example Memcached (1637).mp4 23MB video/3 - 1 - Scalability Basics (1618).mp4 23MB video/3 - 9 - Parallel Databases (1618).mp4 23MB video/8 - 11 - Pig Join and Co-Group Join (1610).mp4 22MB video/1 - 8 - Big Data (1436).mp4 22MB video/10 - 1 - 01 Guest Segment Aaron Kimball Wibidata.mp4 21MB video/1 - 2 - Appetite Whetting Part 2 (1344).mp4 20MB video/3 - 11 - Experimental Results MR and DB (1501).mp4 20MB video/1 - 5 - This Course Part 1 (1402).mp4 20MB video/8 - 8 - Response to NoSQL Systems (1444).mp4 19MB video/5 - 6 - 06 Information Gain (1143).mp4 19MB video/3 - 6 - MapReduce Relational Join Social Example (1317).mp4 19MB video/2 - 7 - SQL for Data Science Interpreting Complicated SQL (1212).mp4 18MB video/3 - 8 - MapReduce Implementation Overview (1338).mp4 18MB video/4 - 8 - Bayes Rule (1153).mp4 18MB video/4 - 6 - Recap and Big Data (1139).mp4 18MB video/1 - 9 - Guest Lecture Biomedical Informatics (1024).mp4 17MB video/4 - 1 - Statistics Intro (1036).mp4 17MB video/3 - 3 - MapReduce Abstractions (1117).mp4 17MB video/5 - 12 - 12 k Nearest Neighbors (1143).mp4 17MB video/5 - 11 - 11 Random Forests (1116).mp4 17MB video/1 - 7 - eScience (1146).mp4 17MB video/4 - 5 - Multiple Hypothesis Testing (1122).mp4 17MB video/8 - 10 - Pig Functions (1141).mp4 16MB video/3 - 2 - Parallel Processing Patterns (1126).mp4 16MB video/5 - 7 - 07 Overfitting (1104).mp4 16MB video/7 - 8 - 08 PRISM Example in Datalog (1110).mp4 16MB video/3 - 5 - MapReduce Text Examples (958).mp4 16MB video/2 - 5 - Relational Algebra Details Project Cross Product Equi-Join (1106).mp4 16MB video/2 - 9 - Physical Optimization (1114).mp4 16MB video/4 - 4 - Fraud and Benfords Law (1055).mp4 16MB video/2 - 4 - Relational Algebra Details Union Diff Select (1053).mp4 16MB video/2 - 3 - Relational Algebra Introduction (1058).mp4 16MB video/5 - 5 - 05 Decision Trees Entropy (1051).mp4 16MB video/9 - 3 - 03 Intuition for Logistic Regression and Support Vector Machines (1055).mp4 16MB video/8 - 6 - Example BigTable (1105).mp4 15MB video/5 - 8 - 08 Evaluation and Cross-Validation (1046).mp4 15MB video/8 - 9 - Pig Intro (1202).mp4 15MB video/2 - 10 - Declarative Languages (1030).mp4 15MB video/7 - 12 - 12 PageRank in MapReduce and Pregel (1042).mp4 15MB video/2 - 1 - From Data Models to Databases (1035).mp4 15MB video/8 - 12 - Pig Evaluation (1011).mp4 14MB video/4 - 3 - Effect Size Meta-analysis Heteroskedasticity (931).mp4 14MB video/1 - 6 - This Course Part 2 (1050).mp4 14MB video/8 - 5 - Example CouchDB (1000).mp4 14MB video/2 - 11 - Logical Data Independence (1123).mp4 14MB video/7 - 6 - 06 Patterns Triangles SPARQL Datalog (1002).mp4 14MB video/5 - 10 - 10 Ensembles Bagging and Boosting (0919).mp4 14MB video/8 - 4 - Example Dynamo (1016).mp4 14MB video/9 - 8 - 08 DBSCAN (0913).mp4 14MB video/6 - 2 - 02 Data Types (937).mp4 13MB video/1 - 3 - Context (930).mp4 13MB video/3 - 7 - MapReduce Matrix Multiply Example (931).mp4 13MB video/9 - 5 - 05 Stochastic Gradient Descent Minibatches Parallelization (0853).mp4 13MB video/4 - 2 - Publication Bias (845).mp4 13MB video/10 - 2 - 02 Guest Segment Karen Hsu Datameer.mp4 13MB video/5 - 3 - 03 Rules Part 1 (0919).mp4 13MB video/8 - 1 - NoSQL Introduction (830).mp4 13MB video/1 - 4 - Dimensions (1024).mp4 13MB video/2 - 2 - Motivating Relational Algebra (857).mp4 13MB video/4 - 7 - Bayesian Intro (759).mp4 13MB video/3 - 4 - MapReduce Pseudocode (754).mp4 12MB video/2 - 6 - Relational Algebra Details Theta-Join (834).mp4 12MB video/7 - 10 - 10 Optimizing MapReduce for Graph Traversal (0820).mp4 12MB video/7 - 7 - 07 Patterns Relational Algebra for Graph Query (0826).mp4 12MB video/7 - 2 - 02 Structure Degree Histograms (0814).mp4 12MB video/5 - 1 - 01 Introduction to Machine Learning Part 1 (0754).mp4 12MB video/7 - 9 - 09 Evaluating Graph Traversal Queries (0829).mp4 12MB video/2 - 8 - SQL for Data Science User-Defined Functions (759).mp4 11MB video/1 - 10 - Logistics (742).mp4 11MB video/7 - 5 - 05 Traversal Spanning Trees Circuits Flows (0657).mp4 10MB video/6 - 1 - 01 Introduction (717).mp4 10MB video/9 - 1 - 01 Gradient Descent Part 1 (0718).mp4 10MB video/9 - 4 - 04 Intuition for Regularization (0659).mp4 10MB video/7 - 11 - 11 Graph Representations (0651).mp4 10MB video/7 - 3 - 03 Structure Diameter Connectivity Centrality (0656).mp4 10MB video/6 - 5 - 05 Visual Encoding (Part 1) (638).mp4 10MB video/7 - 4 - 04 Traversal PageRank (0637).mp4 9MB video/9 - 2 - 02 Gradient Descent Part 2 (0629).mp4 9MB video/3 - 10 - Comparing MapReduce and Databases (0639).mp4 9MB video/7 - 1 - 01 Graph Basics (0622).mp4 9MB video/9 - 6 - 06 Unsupervised Learning (0611).mp4 9MB video/5 - 4 - 04 Rules Part 2 (0539).mp4 9MB video/5 - 2 - 02 Introduction to Machine Learning Part 2 (0523).mp4 8MB video/9 - 7 - 07 K-means (0556).mp4 8MB video/5 - 9 - 09 The Bootstrap (0413).mp4 7MB video/6 - 7 - 07 Visual Perception (Part 1) (439).mp4 7MB assignments/6_VisualizationAssignment.twbx 6MB video/6 - 8 - 08 Visual Perception (Part 2) (418).mp4 6MB video/6 - 3 - 03 Data Types (Exercises) (407).mp4 6MB video/6 - 9 - 09 Visual Perception (Part 3) (356).mp4 5MB video/6 - 10 - 10 Evaluation (325).mp4 5MB video/6 - 4 - 04 Data Dimensions (308).mp4 4MB video/6 - 6 - 06 Visual Encoding (Part 2) (254).mp4 4MB slides/016_parallel_thinking.pdf 3MB slides/005_escience.pdf 3MB slides/017_map_reduce_abstraction.pdf 2MB slides/059_gradient_descent_part_1.pdf 1MB slides/006_big_data.pdf 1MB slides/041_fraud_benfords_law.pdf 1MB slides/000b_appetite_whetting_2.pdf 1MB slides/000_appetite_whetting_1.pdf 1MB slides/Infovis Aragon 2 Data Types.pdf 955KB slides/Infovis Aragon 7 Visual Perception (Part 1).pdf 885KB docs/Running Tableau on AWS.pdf 874KB slides/087_pagerank_mapreduce_pregel.pdf 804KB slides/Infovis Aragon 5 Visual Encoding (Part 1).pdf 750KB slides/033_nosql_response.pdf 747KB slides/guests-kiji-uw-data-science.pdf 736KB slides/025_mapreduce_and_databases_experiments.pdf 730KB slides/032_other_google_systems.pdf 729KB slides/027_eventual_consistency.pdf 718KB slides/003_this_course_1.pdf 704KB slides/Infovis Aragon 6 Visual Encoding (Part 2).pdf 685KB slides/Infovis Aragon 1 Introduction.pdf 674KB slides/Infovis Aragon 4 Data Dimensions.pdf 671KB slides/013_declarative_languages.pdf 661KB slides/043_recap_and_big_data.pdf 659KB slides/061_intuition_logistic_regression_svms.pdf 640KB slides/066_dbscan.pdf 637KB slides/008_data_models.pdf 620KB slides/060_gradient_descent_part_2.pdf 595KB slides/028_memcached.pdf 586KB slides/011.8_interpreting_complicated_sql.pdf 577KB slides/084_evaluating_recursive_programs.pdf 577KB slides/040_effect_size_meta_analysis_heteroskedasticity.pdf 568KB slides/030_couchdb.pdf 562KB slides/064_unsupervised_learning_copy.pdf 551KB slides/034_pig_intro.pdf 527KB slides/026_nosql_intro.pdf 525KB slides/022_map_reduce_implementation_overview.pdf 501KB slides/011.7_theta_join.pdf 492KB slides/063_stochastic_gradient_descent.pdf 490KB slides/062_intuition_regularization.pdf 490KB slides/049_rules_1.pdf 484KB slides/031_bigtable.pdf 483KB slides/077b_graph_histograms.pdf 482KB slides/051_intro_trees.pdf 477KB slides/014_logical_data_independence.pdf 469KB slides/081_pattern_matching.pdf 468KB slides/042_multiple_hypothesis_testing_CORRECTED.pdf 467KB slides/029_dynamo.pdf 466KB slides/Infovis Aragon 8 Visual Perception (Part 2).pdf 450KB slides/085_optimizing_recursive_programs_in_mr.pdf 438KB slides/001_context.pdf 430KB slides/012_physical_optimization.pdf 427KB slides/Infovis Aragon 3 Data Types (Exercises).pdf 424KB slides/086_graph_representations.pdf 424KB slides/052_information_gain.pdf 419KB slides/045_bayes_rule.pdf 409KB slides/039_publication_bias.pdf 408KB slides/080_traversal_tasks.pdf 400KB slides/078_structural_analysis_tasks.pdf 399KB slides/023_parallel_databases.pdf 385KB slides/004_this_course_2.pdf 383KB slides/011.6_relational_algebra_project_cross_equijoin.pdf 381KB slides/011.5_relational_algebra_union_diff_select.pdf 364KB slides/053_overfitting.pdf 347KB slides/007_logistics.pdf 345KB slides/019_map_reduce_text_examples.pdf 338KB slides/037_pig_evaluation.pdf 336KB slides/Infovis Aragon 9 Visual Perception (Part 3).pdf 330KB slides/047_overview_machine_learning.pdf 329KB slides/020_map_reduce_join_social_examples.pdf 326KB slides/021_map_reduce_matrix_multiply.pdf 318KB slides/Infovis Aragon 10 Evaluation.pdf 298KB slides/009_relational_motivation.pdf 294KB slides/055_bootstrap.pdf 285KB slides/002_dimensions.pdf 282KB slides/079_pagerank.pdf 279KB slides/050_rules_2.pdf 278KB slides/054_evaluation_thresholds.pdf 271KB assignments/4_aws-setup.pdf 270KB assignments/1_instructions.pdf 261KB assignments/4_quiz.pdf 258KB assignments/3_js_quiz.pdf 255KB slides/056_ensembles_and_boosting.pdf 242KB slides/036_cogroup_join.pdf 234KB slides/015_scalability.pdf 224KB docs/Syllabus.pdf 203KB assignments/2_instructions.pdf 195KB slides/035_pig_load_filter_group_foreach.pdf 191KB slides/guests-datameer_beyond_mapreduce.pdf 189KB slides/058_nearest_neighbor.pdf 188KB slides/065_kmeans.pdf 181KB slides/010_relational_algebra_intro.pdf 157KB slides/038_stats_intro.pdf 149KB slides/083_prism_example.pdf 147KB assignments/3_python_instructions.pdf 142KB docs/Github Instructions.pdf 128KB docs/Course Logistics.pdf 124KB slides/044_intro_bayesian.pdf 104KB slides/024_mapreduce_and_databases.pdf 95KB slides/018_map_reduce_pseudocode.pdf 94KB slides/048_intro_machine_learning_2.pdf 93KB slides/082_relational_algebra_for_graph_tasks.pdf 91KB docs/Class Virtual Machine.pdf 89KB slides/057_random_forests.pdf 88KB docs/Python Resources.pdf 84KB slides/011.9_user_defined_functions.pdf 62KB subtitles/8 - 2 - Eventual Consistency (1856).srt 29KB subtitles/1 - 8 - Big Data (1436).srt 25KB subtitles/8 - 7 - Example Other Google Systems (1618).srt 25KB subtitles/3 - 9 - Parallel Databases (1618).srt 24KB subtitles/3 - 1 - Scalability Basics (1618).srt 24KB subtitles/8 - 3 - Example Memcached (1637).srt 23KB subtitles/8 - 11 - Pig Join and Co-Group Join (1610).srt 23KB subtitles/1 - 5 - This Course Part 1 (1402).srt 22KB subtitles/1 - 1 - Appetite Whetting Part 1 (1538).srt 22KB subtitles/8 - 8 - Response to NoSQL Systems (1444).srt 22KB subtitles/3 - 11 - Experimental Results MR and DB (1501).srt 20KB subtitles/3 - 8 - MapReduce Implementation Overview (1338).srt 20KB subtitles/1 - 7 - eScience (1146).srt 19KB subtitles/2 - 7 - SQL for Data Science Interpreting Complicated SQL (1212).srt 19KB subtitles/1 - 2 - Appetite Whetting Part 2 (1344).srt 18KB subtitles/8 - 9 - Pig Intro (1202).srt 18KB subtitles/2 - 1 - From Data Models to Databases (1035).srt 18KB subtitles/3 - 6 - MapReduce Relational Join Social Example (1317).srt 18KB subtitles/5 - 6 - 06 Information Gain (1143).srt 17KB subtitles/3 - 3 - MapReduce Abstractions (1117).srt 17KB subtitles/2 - 3 - Relational Algebra Introduction (1058).srt 17KB subtitles/5 - 7 - 07 Overfitting (1104).srt 17KB subtitles/4 - 6 - Recap and Big Data (1139).srt 17KB subtitles/2 - 9 - Physical Optimization (1114).srt 17KB subtitles/1 - 4 - Dimensions (1024).srt 17KB subtitles/1 - 6 - This Course Part 2 (1050).srt 16KB subtitles/3 - 2 - Parallel Processing Patterns (1126).srt 16KB subtitles/5 - 11 - 11 Random Forests (1116).srt 16KB subtitles/8 - 10 - Pig Functions (1141).srt 16KB subtitles/5 - 12 - 12 k Nearest Neighbors (1143).srt 16KB subtitles/1 - 3 - Context (930).srt 16KB subtitles/4 - 8 - Bayes Rule (1153).srt 16KB subtitles/9 - 3 - 03 Intuition for Logistic Regression and Support Vector Machines (1055).srt 16KB subtitles/8 - 6 - Example BigTable (1105).srt 16KB subtitles/4 - 1 - Statistics Intro (1036).srt 16KB subtitles/4 - 5 - Multiple Hypothesis Testing (1122).srt 16KB subtitles/2 - 4 - Relational Algebra Details Union Diff Select (1053).srt 15KB subtitles/2 - 5 - Relational Algebra Details Project Cross Product Equi-Join (1106).srt 15KB subtitles/8 - 5 - Example CouchDB (1000).srt 15KB subtitles/5 - 8 - 08 Evaluation and Cross-Validation (1046).srt 15KB subtitles/8 - 12 - Pig Evaluation (1011).srt 15KB subtitles/2 - 11 - Logical Data Independence (1123).srt 15KB subtitles/4 - 4 - Fraud and Benfords Law (1055).srt 14KB subtitles/4 - 3 - Effect Size Meta-analysis Heteroskedasticity (931).srt 14KB subtitles/5 - 5 - 05 Decision Trees Entropy (1051).srt 14KB subtitles/2 - 10 - Declarative Languages (1030).srt 14KB subtitles/8 - 4 - Example Dynamo (1016).srt 14KB subtitles/2 - 2 - Motivating Relational Algebra (857).srt 13KB subtitles/5 - 10 - 10 Ensembles Bagging and Boosting (0919).srt 13KB subtitles/9 - 5 - 05 Stochastic Gradient Descent Minibatches Parallelization (0853).srt 13KB subtitles/8 - 1 - NoSQL Introduction (830).srt 13KB subtitles/9 - 8 - 08 DBSCAN (0913).srt 13KB subtitles/3 - 5 - MapReduce Text Examples (958).srt 13KB subtitles/1 - 9 - Guest Lecture Biomedical Informatics (1024).srt 13KB subtitles/5 - 3 - 03 Rules Part 1 (0919).srt 13KB subtitles/6 - 2 - 02 Data Types (937).srt 13KB subtitles/2 - 6 - Relational Algebra Details Theta-Join (834).srt 12KB subtitles/5 - 1 - 01 Introduction to Machine Learning Part 1 (0754).srt 12KB subtitles/1 - 10 - Logistics (742).srt 12KB subtitles/4 - 2 - Publication Bias (845).srt 12KB subtitles/9 - 1 - 01 Gradient Descent Part 1 (0718).srt 11KB subtitles/2 - 8 - SQL for Data Science User-Defined Functions (759).srt 11KB subtitles/3 - 10 - Comparing MapReduce and Databases (0639).srt 11KB subtitles/4 - 7 - Bayesian Intro (759).srt 11KB subtitles/9 - 4 - 04 Intuition for Regularization (0659).srt 10KB subtitles/3 - 4 - MapReduce Pseudocode (754).srt 10KB subtitles/9 - 6 - 06 Unsupervised Learning (0611).srt 10KB subtitles/3 - 7 - MapReduce Matrix Multiply Example (931).srt 10KB subtitles/6 - 1 - 01 Introduction (717).srt 10KB subtitles/9 - 2 - 02 Gradient Descent Part 2 (0629).srt 9KB subtitles/5 - 2 - 02 Introduction to Machine Learning Part 2 (0523).srt 8KB subtitles/6 - 5 - 05 Visual Encoding (Part 1) (638).srt 8KB subtitles/5 - 4 - 04 Rules Part 2 (0539).srt 7KB subtitles/9 - 7 - 07 K-means (0556).srt 7KB subtitles/6 - 7 - 07 Visual Perception (Part 1) (439).srt 6KB subtitles/5 - 9 - 09 The Bootstrap (0413).srt 6KB subtitles/6 - 8 - 08 Visual Perception (Part 2) (418).srt 5KB subtitles/6 - 3 - 03 Data Types (Exercises) (407).srt 5KB subtitles/6 - 9 - 09 Visual Perception (Part 3) (356).srt 4KB subtitles/6 - 10 - 10 Evaluation (325).srt 4KB subtitles/6 - 4 - 04 Data Dimensions (308).srt 4KB subtitles/6 - 6 - 06 Visual Encoding (Part 2) (254).srt 4KB virtual machine/tips.txt 856B