589689.xyz

[Manning] Deep learning patterns practices (hevc) (2021) [EN]

  • 收录时间:2022-06-03 11:10:47
  • 文件大小:478MB
  • 下载次数:1
  • 最近下载:2022-06-03 11:10:47
  • 磁力链接:

文件列表

  1. 02 - Ch1 Designing modern machine learning.m4v 8MB
  2. 84 - Ch14 Training schedulers.m4v 7MB
  3. 10 - Ch2 DNN binary classifier.m4v 7MB
  4. 81 - Ch14 Training and deployment pipeline.m4v 7MB
  5. 42 - Ch7 Alternative connectivity patterns.m4v 7MB
  6. 78 - Ch13 Data preprocessing.m4v 7MB
  7. 66 - Ch11 Transfer learning.m4v 7MB
  8. 88 - Ch14 TFX pipeline components for deployment.m4v 7MB
  9. 47 - Ch8 Mobile convolutional neural networks.m4v 7MB
  10. 57 - Ch9 Super-resolution.m4v 7MB
  11. 83 - Ch14 Model feeding with TFX.m4v 7MB
  12. 69 - Ch11 Distinct tasks.m4v 7MB
  13. 87 - Ch14 Serving predictions.m4v 7MB
  14. 72 - Ch12 Training as a CNN.m4v 7MB
  15. 09 - Ch2 Activation functions.m4v 7MB
  16. 82 - Ch14 Model feeding with tf.data.Dataset.m4v 7MB
  17. 64 - Ch10 Learning rate scheduler.m4v 7MB
  18. 49 - Ch8 MobileNet v2.m4v 7MB
  19. 40 - Ch6 ResNeXt - Wide residual neural networks.m4v 7MB
  20. 37 - Ch6 Inception v1 module.m4v 7MB
  21. 55 - Ch9 Autoencoders.m4v 7MB
  22. 70 - Ch12 Data distributions.m4v 6MB
  23. 11 - Ch2 Simple image classifier.m4v 6MB
  24. 71 - Ch12 Out of distribution.m4v 6MB
  25. 80 - Ch13 Data augmentation.m4v 6MB
  26. 76 - Ch13 TFRecord format.m4v 6MB
  27. 67 - Ch11 New classifier.m4v 6MB
  28. 36 - Ch6 Wide convolutional neural networks.m4v 6MB
  29. 50 - Ch8 SqueezeNet.m4v 6MB
  30. 34 - Ch5 Task component.m4v 6MB
  31. 33 - Ch5 Pre-stem.m4v 6MB
  32. 68 - Ch11 TF Hub prebuilt models.m4v 6MB
  33. 04 - Ch1 Next steps in computer learning - Part 1.m4v 6MB
  34. 07 - Ch2 Deep neural networks.m4v 6MB
  35. 22 - Ch4 Convergence.m4v 6MB
  36. 44 - Ch7 Xception - Extreme Inception.m4v 6MB
  37. 14 - Ch3 The ConvNet design for a CNN.m4v 6MB
  38. 75 - Ch13 HDF5 format.m4v 6MB
  39. 85 - Ch14 Model evaluations.m4v 6MB
  40. 38 - Ch6 Inception v2 - Factoring convolutions.m4v 6MB
  41. 16 - Ch3 Architecture.m4v 6MB
  42. 31 - Ch5 Stem component.m4v 6MB
  43. 58 - Ch9 Pretext tasks.m4v 6MB
  44. 48 - Ch8 Stem.m4v 5MB
  45. 77 - Ch13 Data feeding.m4v 5MB
  46. 05 - Ch1 Next steps in computer learning - Part 2.m4v 5MB
  47. 74 - Ch13 Compressed and raw-image formats.m4v 5MB
  48. 35 - Ch5 Beyond computer vision - NLP.m4v 5MB
  49. 25 - Ch4 Invariance.m4v 5MB
  50. 65 - Ch10 Regularization.m4v 5MB
  51. 21 - Ch4 Validation and overfitting.m4v 5MB
  52. 18 - Ch4 Training fundamentals.m4v 5MB
  53. 52 - Ch8 ShuffleNet v1.m4v 5MB
  54. 51 - Ch8 Classifier.m4v 5MB
  55. 63 - Ch10 Random search.m4v 5MB
  56. 56 - Ch9 Convolutional autoencoders.m4v 5MB
  57. 12 - Ch3 Convolutional and residual neural networks.m4v 5MB
  58. 62 - Ch10 Hyperparameter search fundamentals.m4v 5MB
  59. 41 - Ch6 Beyond computer vision - Structured data.m4v 5MB
  60. 23 - Ch4 Hyperparameters.m4v 5MB
  61. 30 - Ch5 Procedural design pattern.m4v 5MB
  62. 54 - Ch8 Deployment.m4v 5MB
  63. 60 - Ch10 Hyperparameter tuning.m4v 5MB
  64. 08 - Ch2 Sequential API method.m4v 5MB
  65. 03 - Ch1 The evolution in machine learning approaches.m4v 4MB
  66. 06 - Ch1 The benefits of design patterns.m4v 4MB
  67. 19 - Ch4 Dataset splitting.m4v 4MB
  68. 32 - Ch5 ResNet.m4v 4MB
  69. 61 - Ch10 Lottery hypothesis.m4v 4MB
  70. Manning.Deep.learning.patterns.practices.2021.pdf 4MB
  71. 27 - Ch4 Raw (disk) datasets.m4v 4MB
  72. 13 - Ch3 Feature detection.m4v 4MB
  73. 45 - Ch7 Exit flow of Xception.m4v 4MB
  74. 79 - Ch13 Preprocessing with TF Extended.m4v 4MB
  75. 15 - Ch3 VGG networks.m4v 4MB
  76. 46 - Ch7 SE-Net - Squeeze and excitation.m4v 4MB
  77. 17 - Ch3 Batch normalization.m4v 4MB
  78. 39 - Ch6 Normal convolution.m4v 4MB
  79. 89 - Ch14 Evolution in production pipeline design.m4v 4MB
  80. 53 - Ch8 Learner.m4v 4MB
  81. 28 - Ch4 Resizing.m4v 4MB
  82. 43 - Ch7 Dense block.m4v 3MB
  83. 24 - Ch4 Learning rate.m4v 3MB
  84. 86 - Ch14 TFX evaluation.m4v 3MB
  85. 73 - Ch13 Data pipeline.m4v 3MB
  86. 20 - Ch4 Data normalization.m4v 3MB
  87. 26 - Ch4 Scale invariance.m4v 3MB
  88. 59 - Part 3. Working with pipelines.m4v 1MB
  89. 29 - Part 2. Basic design pattern.m4v 1MB
  90. 01 - Part 1. Deep learning fundamentals.m4v 599KB