[UdemyCourseDownloader] Deep Learning Advanced NLP and RNNs 收录时间:2019-03-01 21:15:56 文件大小:3GB 下载次数:93 最近下载:2021-01-19 02:26:12 磁力链接: magnet:?xt=urn:btih:b9085bc5426b3ff97d2c7a07a517b5f7b5ce8f1c 立即下载 复制链接 文件列表 8. Appendix/2. Windows-Focused Environment Setup 2018.mp4 193MB 8. Appendix/3. How to How to install Numpy, Theano, Tensorflow, etc....mp4 166MB 2. Review/6. CNN Code (part 1).mp4 149MB 8. Appendix/10. What order should I take your courses in (part 2).mp4 123MB 8. Appendix/4. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.mp4 116MB 5. Attention/5. Attention Code 1.mp4 100MB 8. Appendix/9. What order should I take your courses in (part 1).mp4 88MB 4. Sequence-to-sequence models (Seq2Seq)/7. Seq2Seq in Code 1.mp4 84MB 4. Sequence-to-sequence models (Seq2Seq)/5. Poetry Revisited Code 1.mp4 83MB 8. Appendix/6. How to Code by Yourself (part 1).mp4 82MB 6. Memory Networks/3. Memory Networks Code 1.mp4 80MB 8. Appendix/8. Proof that using Jupyter Notebook is the same as not using it.mp4 78MB 5. Attention/8. Building a Chatbot without any more Code.mp4 76MB 4. Sequence-to-sequence models (Seq2Seq)/6. Poetry Revisited Code 2.mp4 67MB 7. Basics Review/2. (Review) Keras Neural Network in Code.mp4 66MB 2. Review/4. What is a CNN.mp4 62MB 5. Attention/2. Attention Theory.mp4 62MB 2. Review/7. CNN Code (part 2).mp4 59MB 2. Review/2. What is a word embedding.mp4 58MB 2. Review/10. Different Types of RNN Tasks.mp4 57MB 2. Review/8. What is an RNN.mp4 57MB 8. Appendix/7. How to Code by Yourself (part 2).mp4 56MB 2. Review/11. A Simple RNN Experiment.mp4 56MB 6. Memory Networks/5. Memory Networks Code 3.mp4 56MB 6. Memory Networks/4. Memory Networks Code 2.mp4 54MB 4. Sequence-to-sequence models (Seq2Seq)/8. Seq2Seq in Code 2.mp4 51MB 2. Review/9. GRUs and LSTMs.mp4 50MB 3. Bidirectional RNNs/2. Bidirectional RNN Experiment.mp4 49MB 3. Bidirectional RNNs/5. Image Classification Code.mp4 49MB 5. Attention/6. Attention Code 2.mp4 42MB 5. Attention/4. Helpful Implementation Details.mp4 41MB 6. Memory Networks/1. Memory Networks Section Introduction.mp4 39MB 8. Appendix/5. How to Succeed in this Course (Long Version).mp4 39MB 7. Basics Review/3. (Review) Keras Functional API.mp4 39MB 3. Bidirectional RNNs/1. Bidirectional RNNs Motivation.mp4 33MB 3. Bidirectional RNNs/4. Image Classification with Bidirectional RNNs.mp4 33MB 4. Sequence-to-sequence models (Seq2Seq)/1. Seq2Seq Theory.mp4 33MB 4. Sequence-to-sequence models (Seq2Seq)/3. Decoding in Detail and Teacher Forcing.mp4 31MB 2. Review/12. RNN Code.mp4 31MB 6. Memory Networks/2. Memory Networks Theory.mp4 30MB 7. Basics Review/1. (Review) Keras Discussion.mp4 28MB 2. Review/5. Where to get the data.mp4 27MB 3. Bidirectional RNNs/3. Bidirectional RNN Code.mp4 23MB 2. Review/1. Review Section Introduction.mp4 21MB 2. Review/13. Review Section Summary.mp4 20MB 1. Welcome/3. Where to get the code.mp4 20MB 8. Appendix/11. Python 2 vs Python 3.mp4 19MB 2. Review/3. Using word embeddings.mp4 19MB 8. Appendix/1. What is the Appendix.mp4 18MB 1. Welcome/4. How to Succeed in this Course.mp4 17MB 1. Welcome/2. Outline.mp4 16MB 4. Sequence-to-sequence models (Seq2Seq)/2. Seq2Seq Applications.mp4 16MB 6. Memory Networks/6. Memory Networks Section Summary.mp4 16MB 1. Welcome/1. Introduction.mp4 14MB 3. Bidirectional RNNs/6. Bidirectional RNNs Section Summary.mp4 14MB 5. Attention/9. Attention Section Summary.mp4 14MB 4. Sequence-to-sequence models (Seq2Seq)/9. Seq2Seq Section Summary.mp4 14MB 8. Appendix/12. BONUS Where to get discount coupons and FREE deep learning material.mp4 13MB 4. Sequence-to-sequence models (Seq2Seq)/4. Poetry Revisited.mp4 12MB 5. Attention/7. Visualizing Attention.mp4 10MB 5. Attention/1. Attention Section Introduction.mp4 8MB 5. Attention/3. Teacher Forcing.mp4 7MB 8. Appendix/4. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.vtt 28KB 5. Attention/2. Attention Theory.vtt 21KB 8. Appendix/10. What order should I take your courses in (part 2).vtt 20KB 8. Appendix/6. How to Code by Yourself (part 1).vtt 20KB 2. Review/6. CNN Code (part 1).vtt 17KB 8. Appendix/2. Windows-Focused Environment Setup 2018.vtt 17KB 2. Review/2. What is a word embedding.vtt 17KB 2. Review/4. What is a CNN.vtt 16KB 2. Review/8. What is an RNN.vtt 15KB 8. Appendix/9. What order should I take your courses in (part 1).vtt 14KB 2. Review/10. Different Types of RNN Tasks.vtt 13KB 5. Attention/4. Helpful Implementation Details.vtt 13KB 8. Appendix/5. How to Succeed in this Course (Long Version).vtt 13KB 8. Appendix/3. How to How to install Numpy, Theano, Tensorflow, etc....vtt 12KB 8. Appendix/8. Proof that using Jupyter Notebook is the same as not using it.vtt 12KB 2. Review/9. GRUs and LSTMs.vtt 12KB 8. Appendix/7. How to Code by Yourself (part 2).vtt 12KB 6. Memory Networks/1. Memory Networks Section Introduction.vtt 11KB 6. Memory Networks/2. Memory Networks Theory.vtt 11KB 5. Attention/5. Attention Code 1.vtt 10KB 5. Attention/8. Building a Chatbot without any more Code.vtt 10KB 4. Sequence-to-sequence models (Seq2Seq)/5. Poetry Revisited Code 1.vtt 10KB 3. Bidirectional RNNs/1. Bidirectional RNNs Motivation.vtt 9KB 6. Memory Networks/3. Memory Networks Code 1.vtt 8KB 4. Sequence-to-sequence models (Seq2Seq)/7. Seq2Seq in Code 1.vtt 8KB 4. Sequence-to-sequence models (Seq2Seq)/1. Seq2Seq Theory.vtt 8KB 7. Basics Review/1. (Review) Keras Discussion.vtt 8KB 4. Sequence-to-sequence models (Seq2Seq)/3. Decoding in Detail and Teacher Forcing.vtt 8KB 4. Sequence-to-sequence models (Seq2Seq)/6. Poetry Revisited Code 2.vtt 7KB 2. Review/7. CNN Code (part 2).vtt 7KB 3. Bidirectional RNNs/4. Image Classification with Bidirectional RNNs.vtt 7KB 2. Review/11. A Simple RNN Experiment.vtt 7KB 7. Basics Review/2. (Review) Keras Neural Network in Code.vtt 6KB 6. Memory Networks/5. Memory Networks Code 3.vtt 6KB 3. Bidirectional RNNs/5. Image Classification Code.vtt 6KB 1. Welcome/3. Where to get the code.vtt 6KB 2. Review/5. Where to get the data.vtt 6KB 2. Review/13. Review Section Summary.vtt 6KB 4. Sequence-to-sequence models (Seq2Seq)/8. Seq2Seq in Code 2.vtt 5KB 2. Review/3. Using word embeddings.vtt 5KB 8. Appendix/11. Python 2 vs Python 3.vtt 5KB 2. Review/1. Review Section Introduction.vtt 5KB 1. Welcome/2. Outline.vtt 5KB 6. Memory Networks/4. Memory Networks Code 2.vtt 5KB 3. Bidirectional RNNs/2. Bidirectional RNN Experiment.vtt 5KB 7. Basics Review/3. (Review) Keras Functional API.vtt 5KB 6. Memory Networks/6. Memory Networks Section Summary.vtt 4KB 5. Attention/9. Attention Section Summary.vtt 4KB 4. Sequence-to-sequence models (Seq2Seq)/2. Seq2Seq Applications.vtt 4KB 4. Sequence-to-sequence models (Seq2Seq)/4. Poetry Revisited.vtt 4KB 2. Review/12. RNN Code.vtt 4KB 5. Attention/6. Attention Code 2.vtt 4KB 1. Welcome/4. How to Succeed in this Course.vtt 3KB 1. Welcome/1. Introduction.vtt 3KB 4. Sequence-to-sequence models (Seq2Seq)/9. Seq2Seq Section Summary.vtt 3KB 8. Appendix/1. What is the Appendix.vtt 3KB 8. Appendix/12. BONUS Where to get discount coupons and FREE deep learning material.vtt 3KB 5. Attention/7. Visualizing Attention.vtt 3KB 3. Bidirectional RNNs/6. Bidirectional RNNs Section Summary.vtt 3KB 5. Attention/1. Attention Section Introduction.vtt 3KB 3. Bidirectional RNNs/3. Bidirectional RNN Code.vtt 2KB 5. Attention/3. Teacher Forcing.vtt 2KB [FTU Forum].url 1KB [FreeCoursesOnline.Me].url 133B [FreeTutorials.Eu].url 129B