[] Udemy - Complete Linear Regression Analysis in Python 收录时间:2021-12-07 15:30:01 文件大小:3GB 下载次数:1 最近下载:2021-12-07 15:30:01 磁力链接: magnet:?xt=urn:btih:b9375ca495eea673e1807ae38fb7c41b62cb31c5 立即下载 复制链接 文件列表 6. Linear Regression/22. Ridge regression and Lasso in Python.mp4 157MB 4. Introduction to Machine Learning/1. Introduction to Machine Learning.mp4 124MB 5. Data Preprocessing/16. Bi-variate analysis and Variable transformation.mp4 114MB 6. Linear Regression/3. Assessing accuracy of predicted coefficients.mp4 104MB 6. Linear Regression/11. Multiple Linear Regression in Python.mp4 88MB 6. Linear Regression/20. Subset selection techniques.mp4 87MB 5. Data Preprocessing/10. Outlier Treatment in Python.mp4 87MB 5. Data Preprocessing/23. Correlation Analysis.mp4 81MB 2. Setting up Python and Jupyter Notebook/5. Strings in Python Python Basics.mp4 81MB 6. Linear Regression/5. Simple Linear Regression in Python.mp4 79MB 5. Data Preprocessing/3. The Dataset and the Data Dictionary.mp4 79MB 5. Data Preprocessing/7. EDD in Python.mp4 75MB 2. Setting up Python and Jupyter Notebook/6. Lists, Tuples and Directories Python Basics.mp4 74MB 2. Setting up Python and Jupyter Notebook/2. Opening Jupyter Notebook.mp4 73MB 5. Data Preprocessing/24. Correlation Analysis in Python.mp4 68MB 3. Basics of Statistics/3. Describing data Graphically.mp4 65MB 6. Linear Regression/8. The F - statistic.mp4 64MB 6. Linear Regression/17. Test train split in Python.mp4 58MB 2. Setting up Python and Jupyter Notebook/8. Working with Pandas Library of Python.mp4 56MB 2. Setting up Python and Jupyter Notebook/7. Working with Numpy Library of Python.mp4 54MB 5. Data Preprocessing/17. Variable transformation and deletion in Python.mp4 53MB 2. Setting up Python and Jupyter Notebook/3. Introduction to Jupyter.mp4 51MB 6. Linear Regression/2. Basic Equations and Ordinary Least Squares (OLS) method.mp4 50MB 6. Linear Regression/4. Assessing Model Accuracy RSE and R squared.mp4 50MB 6. Linear Regression/14. Test-train split.mp4 49MB 2. Setting up Python and Jupyter Notebook/9. Working with Seaborn Library of Python.mp4 49MB 1. Introduction/2. Course contents.mp4 48MB 4. Introduction to Machine Learning/2. Building a Machine Learning Model.mp4 45MB 5. Data Preprocessing/20. Dummy variable creation Handling qualitative data.mp4 41MB 6. Linear Regression/7. Multiple Linear Regression.mp4 39MB 6. Linear Regression/21. Shrinkage methods Ridge and Lasso.mp4 39MB 3. Basics of Statistics/4. Measures of Centers.mp4 39MB 5. Data Preprocessing/21. Dummy variable creation in Python.mp4 34MB 5. Data Preprocessing/4. Importing Data in Python.mp4 32MB 6. Linear Regression/15. Bias Variance trade-off.mp4 30MB 5. Data Preprocessing/13. Missing Value Imputation in Python.mp4 29MB 5. Data Preprocessing/9. Outlier Treatment.mp4 28MB 5. Data Preprocessing/12. Missing Value Imputation.mp4 28MB 5. Data Preprocessing/6. Univariate analysis and EDD.mp4 27MB 6. Linear Regression/10. Interpreting results of Categorical variables.mp4 27MB 5. Data Preprocessing/1. Gathering Business Knowledge.mp4 25MB 5. Data Preprocessing/19. Non-usable variables.mp4 24MB 5. Data Preprocessing/2. Data Exploration.mp4 23MB 3. Basics of Statistics/6. Measures of Dispersion.mp4 23MB 3. Basics of Statistics/1. Types of Data.mp4 22MB 5. Data Preprocessing/15. Seasonality in Data.mp4 21MB 1. Introduction/4. This is a milestone!.mp4 21MB 6. Linear Regression/19. Linear models other than OLS.mp4 19MB 2. Setting up Python and Jupyter Notebook/1. Installing Python and Anaconda.mp4 19MB 6. Linear Regression/23. Heteroscedasticity.mp4 18MB 1. Introduction/1. Welcome to the course!.mp4 16MB 2. Setting up Python and Jupyter Notebook/4. Arithmetic operators in Python Python Basics.mp4 16MB 7. Bonus Section/1. The final milestone!.mp4 12MB 3. Basics of Statistics/2. Types of Statistics.mp4 11MB 6. Linear Regression/1. The Problem Statement.mp4 11MB 4. Introduction to Machine Learning/2.1 Lecture_machineLearning.pdf 1002KB 4. Introduction to Machine Learning/1.1 Lecture_machineLearning.pdf 992KB 1. Introduction/2.1 00_Introduction_01.pdf 801KB 3. Basics of Statistics/5.1 Exercise 1.pdf 554KB 3. Basics of Statistics/7.1 Exercise 2.pdf 470KB 5. Data Preprocessing/16.1 04_07_Variable_Transformation.pdf 423KB 5. Data Preprocessing/15.1 04_07_PDE_Seasonality.pdf 364KB 5. Data Preprocessing/9.1 04_06_PDE_Outlier_Treatment.pdf 355KB 5. Data Preprocessing/6.1 03_04_PDE_Univariate_Analysis_Uni.pdf 333KB 6. Linear Regression/3.1 05_03_Simple_lin_reg_Accuracy.pdf 333KB 6. Linear Regression/4.1 05_03_Simple_lin_reg_Accuracy.pdf 333KB 5. Data Preprocessing/3.1 03_03_PDE_Raw_Data_Analysis_Uni.pdf 332KB 6. Linear Regression/8.1 05_05_F_stat.pdf 328KB 3. Basics of Statistics/4.1 01_04_Lecture_Centers.pdf 323KB 5. Data Preprocessing/2.1 03_02_PDE_Data_exploration.pdf 323KB 3. Basics of Statistics/3.1 01_03_Lecture_DataSummaryandGraph.pdf 318KB 5. Data Preprocessing/12.1 04_05_PDE_Missing_value.pdf 316KB 6. Linear Regression/2.1 05_02_Simple_lin_reg.pdf 285KB 5. Data Preprocessing/23.1 04_10_Correlation.pdf 267KB 6. Linear Regression/1.1 05_01_Intro.pdf 239KB 6. Linear Regression/14.1 05_12_Test_Train.pdf 239KB 6. Linear Regression/7.1 05_04_Multiple_lin_reg.pdf 220KB 6. Linear Regression/15.1 05_13_Bias_Var_tradeoff.pdf 212KB 6. Linear Regression/20.1 05_10_Subset_Selection.pdf 209KB 6. Linear Regression/21.1 05_11_Shrinkage_methods.pdf 188KB 3. Basics of Statistics/1.1 01_01_Lecture_TypesOfData.pdf 178KB 3. Basics of Statistics/2.1 01_02_Lecture_TypesOfStatistics.pdf 172KB 5. Data Preprocessing/20.1 04_11_Dummy_Var.pdf 163KB 6. Linear Regression/19.1 05_09_Other_lin_model.pdf 157KB 6. Linear Regression/10.1 05_06_Cat_var.pdf 155KB 5. Data Preprocessing/1.1 03_01_PDE_Business_knowledge.pdf 154KB 5. Data Preprocessing/19.1 04_08_PDE_Non_Usable_var.pdf 138KB 2. Setting up Python and Jupyter Notebook/8.1 Customer.csv 64KB 5. Data Preprocessing/3.2 House_Price.csv 53KB 5. Data Preprocessing/4.1 House_Price.csv 53KB 5. Data Preprocessing/5.1 Movie_collection_train.csv 43KB 4. Introduction to Machine Learning/1. Introduction to Machine Learning.srt 19KB 5. Data Preprocessing/16. Bi-variate analysis and Variable transformation.srt 18KB 6. Linear Regression/22. Ridge regression and Lasso in Python.srt 18KB 2. Setting up Python and Jupyter Notebook/6. Lists, Tuples and Directories Python Basics.srt 18KB 2. Setting up Python and Jupyter Notebook/5. Strings in Python Python Basics.srt 17KB 6. Linear Regression/3. Assessing accuracy of predicted coefficients.srt 16KB 6. Linear Regression/20. Subset selection techniques.srt 13KB 6. Linear Regression/11. Multiple Linear Regression in Python.srt 13KB 3. Basics of Statistics/3. Describing data Graphically.srt 13KB 5. Data Preprocessing/10. Outlier Treatment in Python.srt 13KB 2. Setting up Python and Jupyter Notebook/3. Introduction to Jupyter.srt 12KB 6. Linear Regression/25.1 Movie_collection_test.csv 12KB 5. Data Preprocessing/23. Correlation Analysis.srt 12KB 6. Linear Regression/5. Simple Linear Regression in Python.srt 12KB 2. Setting up Python and Jupyter Notebook/7. Working with Numpy Library of Python.srt 11KB 5. Data Preprocessing/7. EDD in Python.srt 10KB 6. Linear Regression/14. Test-train split.srt 10KB 4. Introduction to Machine Learning/2. Building a Machine Learning Model.srt 10KB 6. Linear Regression/2. Basic Equations and Ordinary Least Squares (OLS) method.srt 10KB 1. Introduction/2. Course contents.srt 9KB 6. Linear Regression/8. The F - statistic.srt 9KB 2. Setting up Python and Jupyter Notebook/2. Opening Jupyter Notebook.srt 9KB 2. Setting up Python and Jupyter Notebook/8. Working with Pandas Library of Python.srt 9KB 6. Linear Regression/21. Shrinkage methods Ridge and Lasso.srt 8KB 5. Data Preprocessing/3. The Dataset and the Data Dictionary.srt 8KB 3. Basics of Statistics/4. Measures of Centers.srt 8KB 6. Linear Regression/4. Assessing Model Accuracy RSE and R squared.srt 8KB 6. Linear Regression/17. Test train split in Python.srt 8KB 5. Data Preprocessing/17. Variable transformation and deletion in Python.srt 7KB 2. Setting up Python and Jupyter Notebook/9. Working with Seaborn Library of Python.srt 7KB 5. Data Preprocessing/24. Correlation Analysis in Python.srt 7KB 6. Linear Regression/15. Bias Variance trade-off.srt 7KB 6. Linear Regression/7. Multiple Linear Regression.srt 6KB 5. Data Preprocessing/19. Non-usable variables.srt 6KB 5. Data Preprocessing/4. Importing Data in Python.srt 6KB 5. Data Preprocessing/20. Dummy variable creation Handling qualitative data.srt 5KB 5. Data Preprocessing/21. Dummy variable creation in Python.srt 5KB 6. Linear Regression/10. Interpreting results of Categorical variables.srt 5KB 3. Basics of Statistics/6. Measures of Dispersion.srt 5KB 3. Basics of Statistics/1. Types of Data.srt 5KB 5. Data Preprocessing/9. Outlier Treatment.srt 5KB 6. Linear Regression/19. Linear models other than OLS.srt 4KB 2. Setting up Python and Jupyter Notebook/4. Arithmetic operators in Python Python Basics.srt 4KB 5. Data Preprocessing/13. Missing Value Imputation in Python.srt 4KB 5. Data Preprocessing/12. Missing Value Imputation.srt 4KB 5. Data Preprocessing/1. Gathering Business Knowledge.srt 4KB 5. Data Preprocessing/15. Seasonality in Data.srt 4KB 1. Introduction/4. This is a milestone!.srt 4KB 5. Data Preprocessing/6. Univariate analysis and EDD.srt 4KB 5. Data Preprocessing/2. Data Exploration.srt 4KB 1. Introduction/1. Welcome to the course!.srt 3KB 3. Basics of Statistics/2. Types of Statistics.srt 3KB 6. Linear Regression/23. Heteroscedasticity.srt 3KB 2. Setting up Python and Jupyter Notebook/1. Installing Python and Anaconda.srt 2KB 7. Bonus Section/2. Congratulations & About your certificate.html 2KB 7. Bonus Section/1. The final milestone!.srt 2KB 6. Linear Regression/1. The Problem Statement.srt 2KB 6. Linear Regression/16. More about test-train split.html 559B 5. Data Preprocessing/5. Project exercise 1.html 431B 6. Linear Regression/24. Project Exercise 10.html 424B 3. Basics of Statistics/5. Practice Exercise 1.html 357B 1. Introduction/3. Course Resources.html 336B 6. Linear Regression/13. Project Exercise 9.html 327B 6. Linear Regression/6. Project Exercise 8.html 322B 6. Linear Regression/25. Final Project Exercise.html 301B 3. Basics of Statistics/7. Practice Exercise 2.html 300B 5. Data Preprocessing/25. Project Exercise 7.html 288B 5. Data Preprocessing/18. Project Exercise 5.html 285B 5. Data Preprocessing/14. Project Exercise 4.html 238B 5. Data Preprocessing/11. Project Exercise 3.html 233B 4. Introduction to Machine Learning/3. Introduction to Machine learning quiz.html 210B 5. Data Preprocessing/26. Quiz.html 210B 6. Linear Regression/12. Quiz.html 210B 6. Linear Regression/18. Quiz.html 210B 6. Linear Regression/9. Quiz.html 210B 5. Data Preprocessing/22. Project Exercise 6.html 202B 5. Data Preprocessing/8. Project Exercise 2.html 177B 0. Websites you may like/[FCS Forum].url 133B 0. Websites you may like/[FreeCourseSite.com].url 127B 0. Websites you may like/[CourseClub.ME].url 122B 0. Websites you may like/[GigaCourse.Com].url 49B