[] Udemy - Machine Learning & Deep Learning in Python & R 收录时间:2021-12-22 06:15:47 文件大小:13GB 下载次数:1 最近下载:2021-12-22 06:15:47 磁力链接: magnet:?xt=urn:btih:b9de031e85b8b39e6964a4e30fdcde0c8af1b59a 立即下载 复制链接 文件列表 27. ANN in R/8. Saving - Restoring Models and Using Callbacks.mp4 216MB 37. Time Series - Preprocessing in Python/3. Time Series - Visualization in Python.mp4 165MB 18. Ensemble technique 3 - Boosting/7. XGBoosting in R.mp4 161MB 26. ANN in Python/9. Building Neural Network for Regression Problem.mp4 156MB 26. ANN in Python/11. Saving - Restoring Models and Using Callbacks.mp4 152MB 23. Creating Support Vector Machine Model in R/4. Classification SVM model using Linear Kernel.mp4 139MB 27. ANN in R/6. Building Regression Model with Functional API.mp4 131MB 27. ANN in R/3. Building,Compiling and Training.mp4 131MB 34. Transfer Learning Basics/6. Project - Transfer Learning - VGG16.mp4 129MB 7. Linear Regression/20. Ridge regression and Lasso in Python.mp4 129MB 25. Neural Networks - Stacking cells to create network/3. Back Propagation.mp4 122MB 38. Time Series - Important Concepts/5. Differencing in Python.mp4 113MB 37. Time Series - Preprocessing in Python/5. Time Series - Feature Engineering in Python.mp4 113MB 27. ANN in R/2. Data Normalization and Test-Train Split.mp4 112MB 5. Introduction to Machine Learning/1. Introduction to Machine Learning.mp4 109MB 37. Time Series - Preprocessing in Python/1. Data Loading in Python.mp4 109MB 23. Creating Support Vector Machine Model in R/8. SVM based Regression Model in R.mp4 106MB 7. Linear Regression/21. Ridge regression and Lasso in R.mp4 103MB 14. Simple Decision Trees/13. Building a Regression Tree in R.mp4 103MB 35. Transfer Learning in R/1. Project - Transfer Learning - VGG16 (Implementation).mp4 102MB 37. Time Series - Preprocessing in Python/7. Time Series - Upsampling and Downsampling in Python.mp4 101MB 6. Data Preprocessing/16. Bi-variate analysis and Variable transformation.mp4 100MB 27. ANN in R/4. Evaluating and Predicting.mp4 99MB 6. Data Preprocessing/8. EDD in R.mp4 97MB 3. Setting up R Studio and R crash course/7. Creating Barplots in R.mp4 97MB 7. Linear Regression/3. Assessing accuracy of predicted coefficients.mp4 92MB 26. ANN in Python/10. Using Functional API for complex architectures.mp4 92MB 18. Ensemble technique 3 - Boosting/5. AdaBoosting in R.mp4 89MB 32. Project Creating CNN model from scratch/1. Project in R - Data Preprocessing.mp4 88MB 24. Introduction - Deep Learning/4. Python - Creating Perceptron model.mp4 87MB 15. Simple Classification Tree/5. Building a classification Tree in R.mp4 85MB 27. ANN in R/5. ANN with NeuralNets Package.mp4 84MB 23. Creating Support Vector Machine Model in R/6. Polynomial Kernel with Hyperparameter Tuning.mp4 83MB 6. Data Preprocessing/25. Correlation Matrix in R.mp4 83MB 3. Setting up R Studio and R crash course/3. Packages in R.mp4 83MB 15. Simple Classification Tree/4. Classification tree in Python Training.mp4 83MB 14. Simple Decision Trees/18. Pruning a Tree in R.mp4 82MB 26. ANN in Python/7. Compiling and Training the Neural Network model.mp4 82MB 17. Ensemble technique 2 - Random Forests/3. Using Grid Search in Python.mp4 81MB 27. ANN in R/7. Complex Architectures using Functional API.mp4 80MB 26. ANN in Python/6. Building the Neural Network using Keras.mp4 79MB 7. Linear Regression/17. Subset selection techniques.mp4 79MB 8. Classification Models Data Preparation/1. The Data and the Data Dictionary.mp4 79MB 8. Classification Models Data Preparation/4. EDD in Python.mp4 78MB 16. Ensemble technique 1 - Bagging/2. Ensemble technique 1 - Bagging in Python.mp4 77MB 7. Linear Regression/15. Test-Train Split in R.mp4 76MB 12. K-Nearest Neighbors classifier/4. K-Nearest Neighbors classifier.mp4 75MB 18. Ensemble technique 3 - Boosting/6. Ensemble technique 3c - XGBoost in Python.mp4 75MB 40. Time Series - ARIMA model/3. ARIMA model in Python.mp4 74MB 11. Linear Discriminant Analysis (LDA)/3. Linear Discriminant Analysis in R.mp4 74MB 12. K-Nearest Neighbors classifier/3. Test-Train Split in R.mp4 74MB 14. Simple Decision Trees/17. Pruning a tree in Python.mp4 74MB 31. Project Creating CNN model from scratch in Python/3. Project - Data Preprocessing in Python.mp4 72MB 30. Creating CNN model in R/3. Creating Model Architecture.mp4 72MB 6. Data Preprocessing/23. Correlation Analysis.mp4 72MB 6. Data Preprocessing/10. Outlier Treatment in Python.mp4 70MB 26. ANN in Python/8. Evaluating performance and Predicting using Keras.mp4 70MB 7. Linear Regression/10. Multiple Linear Regression in Python.mp4 70MB 6. Data Preprocessing/3. The Dataset and the Data Dictionary.mp4 69MB 18. Ensemble technique 3 - Boosting/3. Gradient Boosting in R.mp4 69MB 30. Creating CNN model in R/5. Model Performance.mp4 68MB 28. CNN - Basics/5. Channels.mp4 68MB 22. Creating Support Vector Machine Model in Python/7. SVM based Regression Model in Python.mp4 68MB 30. Creating CNN model in R/2. Data Preprocessing.mp4 67MB 8. Classification Models Data Preparation/5. EDD in R.mp4 67MB 41. Time Series - SARIMA model/2. SARIMA model in Python.mp4 66MB 31. Project Creating CNN model from scratch in Python/4. Project - Training CNN model in Python.mp4 66MB 4. Basics of Statistics/3. Describing data Graphically.mp4 65MB 2. Setting up Python and Jupyter Notebook/3. Opening Jupyter Notebook.mp4 65MB 12. K-Nearest Neighbors classifier/7. K-Nearest Neighbors in R.mp4 65MB 2. Setting up Python and Jupyter Notebook/6. Strings in Python Python Basics.mp4 64MB 22. Creating Support Vector Machine Model in Python/11. SVM Based classification model.mp4 64MB 35. Transfer Learning in R/2. Project - Transfer Learning - VGG16 (Performance).mp4 64MB 37. Time Series - Preprocessing in Python/2. Time Series - Visualization Basics.mp4 64MB 7. Linear Regression/18. Subset selection in R.mp4 64MB 7. Linear Regression/5. Simple Linear Regression in Python.mp4 63MB 36. Time Series Analysis and Forecasting/5. Time Series - Basic Notations.mp4 62MB 7. Linear Regression/11. Multiple Linear Regression in R.srt 62MB 7. Linear Regression/11. Multiple Linear Regression in R.mp4 62MB 25. Neural Networks - Stacking cells to create network/4. Some Important Concepts.mp4 62MB 6. Data Preprocessing/7. EDD in Python.mp4 62MB 26. ANN in Python/12. Hyperparameter Tuning.mp4 61MB 23. Creating Support Vector Machine Model in R/5. Hyperparameter Tuning for Linear Kernel.mp4 60MB 25. Neural Networks - Stacking cells to create network/2. Gradient Descent.mp4 60MB 2. Setting up Python and Jupyter Notebook/7. Lists, Tuples and Directories Python Basics.mp4 60MB 3. Setting up R Studio and R crash course/6. Inputting data part 3 Importing from CSV or Text files.mp4 60MB 38. Time Series - Important Concepts/3. Decomposing Time Series in Python.mp4 60MB 37. Time Series - Preprocessing in Python/4. Time Series - Feature Engineering Basics.mp4 59MB 16. Ensemble technique 1 - Bagging/3. Bagging in R.mp4 59MB 29. Creating CNN model in Python/4. Comparison - Pooling vs Without Pooling in Python.mp4 58MB 22. Creating Support Vector Machine Model in Python/12. Hyper Parameter Tuning.mp4 58MB 39. Time Series - Implementation in Python/1. Test Train Split in Python.mp4 57MB 23. Creating Support Vector Machine Model in R/7. Radial Kernel with Hyperparameter Tuning.mp4 57MB 39. Time Series - Implementation in Python/7. Moving Average model in Python.mp4 57MB 32. Project Creating CNN model from scratch/5. Project in R - Data Augmentation.mp4 56MB 26. ANN in Python/3. Dataset for classification.mp4 56MB 20. Support Vector Classifier/1. Support Vector classifiers.mp4 56MB 7. Linear Regression/8. The F - statistic.mp4 56MB 10. Logistic Regression/12. Predicting probabilities, assigning classes and making Confusion Matrix in R.mp4 56MB 6. Data Preprocessing/18. Variable transformation in R.mp4 55MB 6. Data Preprocessing/24. Correlation Analysis in Python.mp4 55MB 29. Creating CNN model in Python/3. CNN model in Python - Training and results.mp4 55MB 23. Creating Support Vector Machine Model in R/1. Importing Data into R.mp4 54MB 39. Time Series - Implementation in Python/4. Auto Regression Model creation in Python.mp4 53MB 33. Project Data Augmentation for avoiding overfitting/2. Project - Data Augmentation Training and Results.mp4 53MB 28. CNN - Basics/4. Filters and Feature maps.mp4 53MB 10. Logistic Regression/9. Creating Confusion Matrix in Python.mp4 51MB 28. CNN - Basics/1. CNN Introduction.mp4 51MB 23. Creating Support Vector Machine Model in R/2. Test-Train Split.mp4 50MB 39. Time Series - Implementation in Python/5. Auto Regression with Walk Forward validation in Python.mp4 50MB 31. Project Creating CNN model from scratch in Python/1. Project - Introduction.mp4 49MB 10. Logistic Regression/2. Training a Simple Logistic Model in Python.mp4 48MB 8. Classification Models Data Preparation/6. Outlier treatment in Python.mp4 47MB 2. Setting up Python and Jupyter Notebook/9. Working with Pandas Library of Python.mp4 47MB 28. CNN - Basics/6. PoolingLayer.mp4 47MB 17. Ensemble technique 2 - Random Forests/2. Ensemble technique 2 - Random Forests in Python.mp4 47MB 32. Project Creating CNN model from scratch/2. CNN Project in R - Structure and Compile.mp4 46MB 22. Creating Support Vector Machine Model in Python/9. Classification model - Preprocessing.mp4 45MB 15. Simple Classification Tree/3. Classification tree in Python Preprocessing.mp4 45MB 25. Neural Networks - Stacking cells to create network/5. Hyperparameter.mp4 45MB 7. Linear Regression/14. Test train split in Python.mp4 45MB 24. Introduction - Deep Learning/2. Perceptron.mp4 45MB 30. Creating CNN model in R/6. Comparison - Pooling vs Without Pooling in R.mp4 45MB 8. Classification Models Data Preparation/13. Dummy variable creation in R.mp4 44MB 26. ANN in Python/4. Normalization and Test-Train split.mp4 44MB 6. Data Preprocessing/17. Variable transformation and deletion in Python.mp4 44MB 6. Data Preprocessing/22. Dummy variable creation in R.mp4 44MB 14. Simple Decision Trees/11. Splitting Data into Test and Train Set in R.mp4 44MB 2. Setting up Python and Jupyter Notebook/8. Working with Numpy Library of Python.mp4 44MB 14. Simple Decision Trees/2. Understanding a Regression Tree.mp4 44MB 14. Simple Decision Trees/6. Importing the Data set into R.mp4 44MB 7. Linear Regression/4. Assessing Model Accuracy RSE and R squared.mp4 44MB 7. Linear Regression/2. Basic Equations and Ordinary Least Squares (OLS) method.mp4 43MB 39. Time Series - Implementation in Python/2. Naive (Persistence) model in Python.mp4 43MB 29. Creating CNN model in Python/2. CNN model in Python - structure and Compile.mp4 43MB 14. Simple Decision Trees/1. Basics of Decision Trees.mp4 43MB 12. K-Nearest Neighbors classifier/6. K-Nearest Neighbors in Python Part 2.mp4 42MB 3. Setting up R Studio and R crash course/8. Creating Histograms in R.mp4 42MB 7. Linear Regression/12. Test-train split.mp4 42MB 13. Comparing results from 3 models/1. Understanding the results of classification models.mp4 42MB 33. Project Data Augmentation for avoiding overfitting/1. Project - Data Augmentation Preprocessing.mp4 41MB 40. Time Series - ARIMA model/1. ACF and PACF.mp4 41MB 11. Linear Discriminant Analysis (LDA)/1. Linear Discriminant Analysis.mp4 41MB 2. Setting up Python and Jupyter Notebook/4. Introduction to Jupyter.mp4 41MB 7. Linear Regression/6. Simple Linear Regression in R.mp4 41MB 3. Setting up R Studio and R crash course/4. Inputting data part 1 Inbuilt datasets of R.mp4 41MB 29. Creating CNN model in Python/1. CNN model in Python - Preprocessing.mp4 41MB 25. Neural Networks - Stacking cells to create network/1. Basic Terminologies.mp4 40MB 2. Setting up Python and Jupyter Notebook/10. Working with Seaborn Library of Python.mp4 40MB 21. Support Vector Machines/1. Kernel Based Support Vector Machines.mp4 40MB 18. Ensemble technique 3 - Boosting/2. Ensemble technique 3a - Boosting in Python.mp4 40MB 5. Introduction to Machine Learning/2. Building a Machine Learning Model.mp4 39MB 12. K-Nearest Neighbors classifier/1. Test-Train Split.mp4 39MB 41. Time Series - SARIMA model/1. SARIMA model.mp4 39MB 3. Setting up R Studio and R crash course/2. Basics of R and R studio.mp4 39MB 37. Time Series - Preprocessing in Python/9. Moving Average.mp4 39MB 4. Basics of Statistics/4. Measures of Centers.mp4 39MB 22. Creating Support Vector Machine Model in Python/6. Standardizing the data.mp4 38MB 8. Classification Models Data Preparation/11. Variable transformation in R.mp4 38MB 14. Simple Decision Trees/4. The Data set for this part.mp4 37MB 12. K-Nearest Neighbors classifier/5. K-Nearest Neighbors in Python Part 1.mp4 37MB 22. Creating Support Vector Machine Model in Python/14. Radial Kernel with Hyperparameter Tuning.mp4 37MB 22. Creating Support Vector Machine Model in Python/2. The Data set for the Regression problem.mp4 37MB 6. Data Preprocessing/20. Dummy variable creation Handling qualitative data.mp4 37MB 3. Setting up R Studio and R crash course/1. Installing R and R studio.mp4 36MB 10. Logistic Regression/10. Evaluating performance of model.mp4 35MB 24. Introduction - Deep Learning/3. Activation Functions.mp4 35MB 36. Time Series Analysis and Forecasting/4. Forecasting model creation - Steps 1 (Goal).mp4 34MB 7. Linear Regression/7. Multiple Linear Regression.mp4 34MB 7. Linear Regression/19. Shrinkage methods Ridge and Lasso.mp4 33MB 12. K-Nearest Neighbors classifier/2. Test-Train Split in Python.mp4 33MB 10. Logistic Regression/1. Logistic Regression.mp4 33MB 38. Time Series - Important Concepts/4. Differencing.mp4 32MB 30. Creating CNN model in R/4. Compiling and training.mp4 32MB 40. Time Series - ARIMA model/4. ARIMA model with Walk Forward Validation in Python.mp4 32MB 28. CNN - Basics/3. Padding.mp4 32MB 6. Data Preprocessing/11. Outlier Treatment in R.mp4 31MB 17. Ensemble technique 2 - Random Forests/4. Random Forest in R.mp4 31MB 18. Ensemble technique 3 - Boosting/1. Boosting.mp4 31MB 18. Ensemble technique 3 - Boosting/4. Ensemble technique 3b - AdaBoost in Python.mp4 31MB 34. Transfer Learning Basics/5. Transfer Learning.mp4 30MB 19. Maximum Margin Classifier/2. The Concept of a Hyperplane.mp4 29MB 1. Introduction/1. Introduction.mp4 29MB 8. Classification Models Data Preparation/10. Variable transformation and Deletion in Python.mp4 29MB 24. Introduction - Deep Learning/1. Introduction to Neural Networks and Course flow.mp4 29MB 15. Simple Classification Tree/1. Classification tree.mp4 28MB 16. Ensemble technique 1 - Bagging/1. Ensemble technique 1 - Bagging.mp4 28MB 6. Data Preprocessing/4. Importing Data in Python.mp4 28MB 10. Logistic Regression/4. Result of Simple Logistic Regression.mp4 27MB 6. Data Preprocessing/21. Dummy variable creation in Python.mp4 27MB 8. Classification Models Data Preparation/12. Dummy variable creation in Python.mp4 26MB 10. Logistic Regression/6. Training multiple predictor Logistic model in Python.mp4 26MB 6. Data Preprocessing/14. Missing Value imputation in R.mp4 26MB 36. Time Series Analysis and Forecasting/2. Time Series Forecasting - Use cases.mp4 26MB 14. Simple Decision Trees/5. Importing the Data set into Python.mp4 26MB 22. Creating Support Vector Machine Model in Python/3. Importing data for regression model.mp4 26MB 10. Logistic Regression/3. Training a Simple Logistic model in R.mp4 26MB 3. Setting up R Studio and R crash course/5. Inputting data part 2 Manual data entry.mp4 26MB 8. Classification Models Data Preparation/7. Outlier Treatment in R.mp4 25MB 7. Linear Regression/13. Bias Variance trade-off.mp4 25MB 6. Data Preprocessing/12. Missing Value Imputation.mp4 25MB 14. Simple Decision Trees/8. Dummy Variable creation in Python.mp4 25MB 14. Simple Decision Trees/10. Test-Train split in Python.mp4 25MB 22. Creating Support Vector Machine Model in Python/5. Test-Train Split.mp4 25MB 32. Project Creating CNN model from scratch/3. Project in R - Training.mp4 25MB 6. Data Preprocessing/9. Outlier Treatment.mp4 24MB 6. Data Preprocessing/6. Univariate analysis and EDD.mp4 24MB 39. Time Series - Implementation in Python/6. Moving Average model -Basics.mp4 24MB 32. Project Creating CNN model from scratch/6. Project in R - Validation Performance.mp4 24MB 6. Data Preprocessing/13. Missing Value Imputation in Python.mp4 23MB 32. Project Creating CNN model from scratch/4. Project in R - Model Performance.mp4 23MB 22. Creating Support Vector Machine Model in Python/13. Polynomial Kernel with Hyperparameter Tuning.mp4 23MB 4. Basics of Statistics/5. Measures of Dispersion.mp4 23MB 27. ANN in R/1. Installing Keras and Tensorflow.mp4 23MB 8. Classification Models Data Preparation/8. Missing Value Imputation in Python.mp4 23MB 7. Linear Regression/9. Interpreting results of Categorical variables.mp4 23MB 19. Maximum Margin Classifier/3. Maximum Margin Classifier.mp4 22MB 6. Data Preprocessing/1. Gathering Business Knowledge.mp4 22MB 13. Comparing results from 3 models/2. Summary of the three models.mp4 22MB 8. Classification Models Data Preparation/2. Data Import in Python.mp4 22MB 4. Basics of Statistics/1. Types of Data.mp4 22MB 14. Simple Decision Trees/15. Plotting decision tree in Python.mp4 21MB 40. Time Series - ARIMA model/2. ARIMA model - Basics.mp4 21MB 34. Transfer Learning Basics/4. GoogLeNet.mp4 21MB 38. Time Series - Important Concepts/2. Random Walk.mp4 21MB 10. Logistic Regression/8. Confusion Matrix.mp4 21MB 31. Project Creating CNN model from scratch in Python/5. Project in Python - model results.mp4 21MB 34. Transfer Learning Basics/1. ILSVRC.mp4 21MB 2. Setting up Python and Jupyter Notebook/2. This is a milestone!.mp4 21MB 6. Data Preprocessing/2. Data Exploration.mp4 20MB 9. The Three classification models/1. Three Classifiers and the problem statement.mp4 20MB 6. Data Preprocessing/19. Non-usable variables.mp4 20MB 26. ANN in Python/2. Installing Tensorflow and Keras.mp4 20MB 8. Classification Models Data Preparation/9. Missing Value imputation in R.mp4 19MB 15. Simple Classification Tree/2. The Data set for Classification problem.mp4 19MB 22. Creating Support Vector Machine Model in Python/8. The Data set for the Classification problem.mp4 19MB 14. Simple Decision Trees/16. Pruning a tree.mp4 18MB 17. Ensemble technique 2 - Random Forests/1. Ensemble technique 2 - Random Forests.mp4 18MB 14. Simple Decision Trees/7. Missing value treatment in Python.mp4 18MB 14. Simple Decision Trees/12. Creating Decision tree in Python.mp4 18MB 6. Data Preprocessing/15. Seasonality in Data.mp4 17MB 37. Time Series - Preprocessing in Python/6. Time Series - Upsampling and Downsampling.mp4 17MB 9. The Three classification models/2. Why can't we use Linear Regression.mp4 17MB 39. Time Series - Implementation in Python/3. Auto Regression Model - Basics.mp4 17MB 28. CNN - Basics/2. Stride.mp4 17MB 7. Linear Regression/16. Regression models other than OLS.mp4 17MB 14. Simple Decision Trees/14. Evaluating model performance in Python.mp4 16MB 2. Setting up Python and Jupyter Notebook/1. Installing Python and Anaconda.mp4 16MB 10. Logistic Regression/7. Training multiple predictor Logistic model in R.mp4 16MB 10. Logistic Regression/7. Training multiple predictor Logistic model in R.srt 15MB 14. Simple Decision Trees/9. Dependent- Independent Data split in Python.mp4 15MB 22. Creating Support Vector Machine Model in Python/4. X-y Split.mp4 15MB 26. ANN in Python/1. Keras and Tensorflow.mp4 15MB 37. Time Series - Preprocessing in Python/8. Time Series - Power Transformation.mp4 15MB 7. Linear Regression/22. Heteroscedasticity.mp4 14MB 14. Simple Decision Trees/3. The stopping criteria for controlling tree growth.mp4 14MB 8. Classification Models Data Preparation/3. Importing the dataset into R.mp4 13MB 6. Data Preprocessing/5. Importing the dataset into R.mp4 13MB 2. Setting up Python and Jupyter Notebook/5. Arithmetic operators in Python Python Basics.mp4 13MB 36. Time Series Analysis and Forecasting/1. Introduction.mp4 12MB 42. Bonus Section/1. The final milestone!.mp4 12MB 11. Linear Discriminant Analysis (LDA)/2. LDA in Python.mp4 11MB 38. Time Series - Important Concepts/1. White Noise.mp4 11MB 4. Basics of Statistics/2. Types of Statistics.mp4 11MB 26. ANN in Python/5. Different ways to create ANN using Keras.mp4 11MB 20. Support Vector Classifier/2. Limitations of Support Vector Classifiers.mp4 11MB 19. Maximum Margin Classifier/4. Limitations of Maximum Margin Classifier.mp4 11MB 34. Transfer Learning Basics/3. VGG16NET.mp4 10MB 36. Time Series Analysis and Forecasting/3. Forecasting model creation - Steps.mp4 10MB 22. Creating Support Vector Machine Model in Python/10. Classification model - Standardizing the data.mp4 10MB 7. Linear Regression/1. The Problem Statement.mp4 9MB 10. Logistic Regression/11. Evaluating model performance in Python.mp4 9MB 19. Maximum Margin Classifier/1. Content flow.mp4 9MB 10. Logistic Regression/5. Logistic with multiple predictors.mp4 9MB 37. Time Series - Preprocessing in Python/10. Exponential Smoothing.mp4 8MB 30. Creating CNN model in R/1. CNN on MNIST Fashion Dataset - Model Architecture.mp4 7MB 34. Transfer Learning Basics/2. LeNET.mp4 7MB 15. Simple Classification Tree/6. Advantages and Disadvantages of Decision Trees.mp4 7MB 41. Time Series - SARIMA model/3. Stationary time Series.mp4 6MB 22. Creating Support Vector Machine Model in Python/1. Regression and Classification Models.mp4 4MB 37. Time Series - Preprocessing in Python/3. Time Series - Visualization in Python.srt 29KB 25. Neural Networks - Stacking cells to create network/3. Back Propagation.srt 25KB 26. ANN in Python/9. Building Neural Network for Regression Problem.srt 24KB 27. ANN in R/8. Saving - Restoring Models and Using Callbacks.srt 21KB 7. Linear Regression/20. Ridge regression and Lasso in Python.srt 21KB 26. ANN in Python/11. Saving - Restoring Models and Using Callbacks.srt 21KB 34. Transfer Learning Basics/6. Project - Transfer Learning - VGG16.srt 20KB 2. Setting up Python and Jupyter Notebook/7. Lists, Tuples and Directories Python Basics.srt 20KB 5. Introduction to Machine Learning/1. Introduction to Machine Learning.srt 20KB 6. Data Preprocessing/16. Bi-variate analysis and Variable transformation.srt 19KB 37. Time Series - Preprocessing in Python/5. Time Series - Feature Engineering in Python.srt 19KB 18. Ensemble technique 3 - Boosting/7. XGBoosting in R.srt 18KB 2. Setting up Python and Jupyter Notebook/6. Strings in Python Python Basics.srt 18KB 8. Classification Models Data Preparation/4. EDD in Python.srt 18KB 23. Creating Support Vector Machine Model in R/4. Classification SVM model using Linear Kernel.srt 18KB 37. Time Series - Preprocessing in Python/1. Data Loading in Python.srt 18KB 37. Time Series - Preprocessing in Python/7. Time Series - Upsampling and Downsampling in Python.srt 18KB 7. Linear Regression/3. Assessing accuracy of predicted coefficients.srt 17KB 27. ANN in R/3. Building,Compiling and Training.srt 16KB 38. Time Series - Important Concepts/5. Differencing in Python.srt 16KB 24. Introduction - Deep Learning/4. Python - Creating Perceptron model.srt 16KB 14. Simple Decision Trees/13. Building a Regression Tree in R.srt 16KB 3. Setting up R Studio and R crash course/7. Creating Barplots in R.srt 15KB 15. Simple Classification Tree/4. Classification tree in Python Training.srt 15KB 40. Time Series - ARIMA model/3. ARIMA model in Python.srt 14KB 7. Linear Regression/10. Multiple Linear Regression in Python.srt 14KB 35. Transfer Learning in R/1. Project - Transfer Learning - VGG16 (Implementation).srt 14KB 6. Data Preprocessing/10. Outlier Treatment in Python.srt 14KB 17. Ensemble technique 2 - Random Forests/3. Using Grid Search in Python.srt 14KB 7. Linear Regression/17. Subset selection techniques.srt 14KB 25. Neural Networks - Stacking cells to create network/4. Some Important Concepts.srt 14KB 27. ANN in R/6. Building Regression Model with Functional API.srt 14KB 2. Setting up Python and Jupyter Notebook/4. Introduction to Jupyter.srt 13KB 6. Data Preprocessing/8. EDD in R.srt 13KB 7. Linear Regression/5. Simple Linear Regression in Python.srt 13KB 26. ANN in Python/10. Using Functional API for complex architectures.srt 13KB 26. ANN in Python/6. Building the Neural Network using Keras.srt 13KB 27. ANN in R/2. Data Normalization and Test-Train Split.srt 13KB 4. Basics of Statistics/3. Describing data Graphically.srt 13KB 25. Neural Networks - Stacking cells to create network/2. Gradient Descent.srt 13KB 22. Creating Support Vector Machine Model in Python/11. SVM Based classification model.srt 12KB 7. Linear Regression/21. Ridge regression and Lasso in R.srt 12KB 16. Ensemble technique 1 - Bagging/2. Ensemble technique 1 - Bagging in Python.srt 12KB 3. Setting up R Studio and R crash course/3. Packages in R.srt 12KB 23. Creating Support Vector Machine Model in R/8. SVM based Regression Model in R.srt 12KB 39. Time Series - Implementation in Python/1. Test Train Split in Python.srt 12KB 3. Setting up R Studio and R crash course/2. Basics of R and R studio.srt 12KB 14. Simple Decision Trees/2. Understanding a Regression Tree.srt 12KB 6. Data Preprocessing/23. Correlation Analysis.srt 12KB 11. Linear Discriminant Analysis (LDA)/1. Linear Discriminant Analysis.srt 12KB 32. Project Creating CNN model from scratch/1. Project in R - Data Preprocessing.srt 12KB 2. Setting up Python and Jupyter Notebook/8. Working with Numpy Library of Python.srt 12KB 37. Time Series - Preprocessing in Python/4. Time Series - Feature Engineering Basics.srt 12KB 6. Data Preprocessing/7. EDD in Python.srt 12KB 41. Time Series - SARIMA model/2. SARIMA model in Python.srt 12KB 23. Creating Support Vector Machine Model in R/6. Polynomial Kernel with Hyperparameter Tuning.srt 11KB 18. Ensemble technique 3 - Boosting/6. Ensemble technique 3c - XGBoost in Python.srt 11KB 8. Classification Models Data Preparation/5. EDD in R.srt 11KB 14. Simple Decision Trees/1. Basics of Decision Trees.srt 11KB 7. Linear Regression/12. Test-train split.srt 11KB 20. Support Vector Classifier/1. Support Vector classifiers.srt 11KB 10. Logistic Regression/9. Creating Confusion Matrix in Python.srt 11KB 25. Neural Networks - Stacking cells to create network/1. Basic Terminologies.srt 11KB 22. Creating Support Vector Machine Model in Python/12. Hyper Parameter Tuning.srt 11KB 14. Simple Decision Trees/17. Pruning a tree in Python.srt 11KB 10. Logistic Regression/2. Training a Simple Logistic Model in Python.srt 11KB 12. K-Nearest Neighbors classifier/1. Test-Train Split.srt 11KB 18. Ensemble technique 3 - Boosting/5. AdaBoosting in R.srt 11KB 22. Creating Support Vector Machine Model in Python/7. SVM based Regression Model in Python.srt 10KB 7. Linear Regression/2. Basic Equations and Ordinary Least Squares (OLS) method.srt 10KB 38. Time Series - Important Concepts/3. Decomposing Time Series in Python.srt 10KB 37. Time Series - Preprocessing in Python/2. Time Series - Visualization Basics.srt 10KB 5. Introduction to Machine Learning/2. Building a Machine Learning Model.srt 10KB 11. Linear Discriminant Analysis (LDA)/3. Linear Discriminant Analysis in R.srt 10KB 24. Introduction - Deep Learning/2. Perceptron.srt 10KB 39. Time Series - Implementation in Python/4. Auto Regression Model creation in Python.srt 10KB 15. Simple Classification Tree/5. Building a classification Tree in R.srt 10KB 2. Setting up Python and Jupyter Notebook/9. Working with Pandas Library of Python.srt 10KB 27. ANN in R/4. Evaluating and Predicting.srt 10KB 26. ANN in Python/7. Compiling and Training the Neural Network model.srt 10KB 12. K-Nearest Neighbors classifier/4. K-Nearest Neighbors classifier.srt 10KB 6. Data Preprocessing/18. Variable transformation in R.srt 10KB 2. Setting up Python and Jupyter Notebook/3. Opening Jupyter Notebook.srt 10KB 26. ANN in Python/12. Hyperparameter Tuning.srt 10KB 12. K-Nearest Neighbors classifier/3. Test-Train Split in R.srt 10KB 26. ANN in Python/8. Evaluating performance and Predicting using Keras.srt 10KB 7. Linear Regression/8. The F - statistic.srt 10KB 14. Simple Decision Trees/18. Pruning a Tree in R.srt 10KB 36. Time Series Analysis and Forecasting/5. Time Series - Basic Notations.srt 10KB 39. Time Series - Implementation in Python/7. Moving Average model in Python.srt 10KB 6. Data Preprocessing/25. Correlation Matrix in R.srt 10KB 8. Classification Models Data Preparation/6. Outlier treatment in Python.srt 10KB 10. Logistic Regression/10. Evaluating performance of model.srt 9KB 7. Linear Regression/15. Test-Train Split in R.srt 9KB 8. Classification Models Data Preparation/1. The Data and the Data Dictionary.srt 9KB 25. Neural Networks - Stacking cells to create network/5. Hyperparameter.srt 9KB 7. Linear Regression/6. Simple Linear Regression in R.srt 9KB 31. Project Creating CNN model from scratch in Python/3. Project - Data Preprocessing in Python.srt 9KB 31. Project Creating CNN model from scratch in Python/4. Project - Training CNN model in Python.srt 9KB 6. Data Preprocessing/17. Variable transformation and deletion in Python.srt 9KB 7. Linear Regression/19. Shrinkage methods Ridge and Lasso.srt 9KB 12. K-Nearest Neighbors classifier/7. K-Nearest Neighbors in R.srt 9KB 15. Simple Classification Tree/3. Classification tree in Python Preprocessing.srt 9KB 22. Creating Support Vector Machine Model in Python/9. Classification model - Preprocessing.srt 9KB 23. Creating Support Vector Machine Model in R/1. Importing Data into R.srt 9KB 27. ANN in R/7. Complex Architectures using Functional API.srt 9KB 35. Transfer Learning in R/2. Project - Transfer Learning - VGG16 (Performance).srt 9KB 39. Time Series - Implementation in Python/5. Auto Regression with Walk Forward validation in Python.srt 9KB 6. Data Preprocessing/3. The Dataset and the Data Dictionary.srt 9KB 7. Linear Regression/14. Test train split in Python.srt 9KB 40. Time Series - ARIMA model/1. ACF and PACF.srt 9KB 10. Logistic Regression/1. Logistic Regression.srt 9KB 18. Ensemble technique 3 - Boosting/3. Gradient Boosting in R.srt 9KB 27. ANN in R/5. ANN with NeuralNets Package.srt 8KB 7. Linear Regression/4. Assessing Model Accuracy RSE and R squared.srt 8KB 2. Setting up Python and Jupyter Notebook/10. Working with Seaborn Library of Python.srt 8KB 7. Linear Regression/18. Subset selection in R.srt 8KB 39. Time Series - Implementation in Python/2. Naive (Persistence) model in Python.srt 8KB 24. Introduction - Deep Learning/3. Activation Functions.srt 8KB 28. CNN - Basics/1. CNN Introduction.srt 8KB 26. ANN in Python/3. Dataset for classification.srt 8KB 41. Time Series - SARIMA model/1. SARIMA model.srt 8KB 4. Basics of Statistics/4. Measures of Centers.srt 8KB 32. Project Creating CNN model from scratch/5. Project in R - Data Augmentation.srt 8KB 18. Ensemble technique 3 - Boosting/1. Boosting.srt 8KB 37. Time Series - Preprocessing in Python/9. Moving Average.srt 8KB 28. CNN - Basics/4. Filters and Feature maps.srt 8KB 13. Comparing results from 3 models/1. Understanding the results of classification models.srt 8KB 31. Project Creating CNN model from scratch in Python/1. Project - Introduction.srt 7KB 30. Creating CNN model in R/2. Data Preprocessing.srt 7KB 10. Logistic Regression/12. Predicting probabilities, assigning classes and making Confusion Matrix in R.srt 7KB 12. K-Nearest Neighbors classifier/2. Test-Train Split in Python.srt 7KB 16. Ensemble technique 1 - Bagging/1. Ensemble technique 1 - Bagging.srt 7KB 29. Creating CNN model in Python/2. CNN model in Python - structure and Compile.srt 7KB 22. Creating Support Vector Machine Model in Python/14. Radial Kernel with Hyperparameter Tuning.srt 7KB 33. Project Data Augmentation for avoiding overfitting/1. Project - Data Augmentation Preprocessing.srt 7KB 14. Simple Decision Trees/6. Importing the Data set into R.srt 7KB 23. Creating Support Vector Machine Model in R/7. Radial Kernel with Hyperparameter Tuning.srt 7KB 16. Ensemble technique 1 - Bagging/3. Bagging in R.srt 7KB 3. Setting up R Studio and R crash course/6. Inputting data part 3 Importing from CSV or Text files.srt 7KB 6. Data Preprocessing/24. Correlation Analysis in Python.srt 7KB 7. Linear Regression/13. Bias Variance trade-off.srt 7KB 23. Creating Support Vector Machine Model in R/5. Hyperparameter Tuning for Linear Kernel.srt 7KB 12. K-Nearest Neighbors classifier/6. K-Nearest Neighbors in Python Part 2.srt 7KB 33. Project Data Augmentation for avoiding overfitting/2. Project - Data Augmentation Training and Results.srt 7KB 3. Setting up R Studio and R crash course/1. Installing R and R studio.srt 7KB 8. Classification Models Data Preparation/11. Variable transformation in R.srt 7KB 15. Simple Classification Tree/1. Classification tree.srt 7KB 21. Support Vector Machines/1. Kernel Based Support Vector Machines.srt 7KB 17. Ensemble technique 2 - Random Forests/2. Ensemble technique 2 - Random Forests in Python.srt 7KB 38. Time Series - Important Concepts/4. Differencing.srt 7KB 30. Creating CNN model in R/5. Model Performance.srt 7KB 22. Creating Support Vector Machine Model in Python/6. Standardizing the data.srt 7KB 8. Classification Models Data Preparation/13. Dummy variable creation in R.srt 6KB 6. Data Preprocessing/4. Importing Data in Python.srt 6KB 36. Time Series Analysis and Forecasting/4. Forecasting model creation - Steps 1 (Goal).srt 6KB 29. Creating CNN model in Python/3. CNN model in Python - Training and results.srt 6KB 7. Linear Regression/7. Multiple Linear Regression.srt 6KB 30. Creating CNN model in R/3. Creating Model Architecture.srt 6KB 28. CNN - Basics/5. Channels.srt 6KB 6. Data Preprocessing/21. Dummy variable creation in Python.srt 6KB 40. Time Series - ARIMA model/4. ARIMA model with Walk Forward Validation in Python.srt 6KB 14. Simple Decision Trees/10. Test-Train split in Python.srt 6KB 22. Creating Support Vector Machine Model in Python/5. Test-Train Split.srt 6KB 8. Classification Models Data Preparation/12. Dummy variable creation in Python.srt 6KB 3. Setting up R Studio and R crash course/8. Creating Histograms in R.srt 6KB 26. ANN in Python/4. Normalization and Test-Train split.srt 6KB 6. Data Preprocessing/22. Dummy variable creation in R.srt 6KB 23. Creating Support Vector Machine Model in R/2. Test-Train Split.srt 6KB 6. Data Preprocessing/19. Non-usable variables.srt 6KB 10. Logistic Regression/6. Training multiple predictor Logistic model in Python.srt 6KB 13. Comparing results from 3 models/2. Summary of the three models.srt 6KB 7. Linear Regression/9. Interpreting results of Categorical variables.srt 6KB 10. Logistic Regression/4. Result of Simple Logistic Regression.srt 6KB 14. Simple Decision Trees/5. Importing the Data set into Python.srt 6KB 22. Creating Support Vector Machine Model in Python/3. Importing data for regression model.srt 6KB 28. CNN - Basics/6. PoolingLayer.srt 6KB 14. Simple Decision Trees/11. Splitting Data into Test and Train Set in R.srt 6KB 12. K-Nearest Neighbors classifier/5. K-Nearest Neighbors in Python Part 1.srt 6KB 6. Data Preprocessing/20. Dummy variable creation Handling qualitative data.srt 6KB 29. Creating CNN model in Python/1. CNN model in Python - Preprocessing.srt 6KB 29. Creating CNN model in Python/4. Comparison - Pooling vs Without Pooling in Python.srt 6KB 32. Project Creating CNN model from scratch/2. CNN Project in R - Structure and Compile.srt 6KB 9. The Three classification models/2. Why can't we use Linear Regression.srt 5KB 34. Transfer Learning Basics/5. Transfer Learning.srt 5KB 18. Ensemble technique 3 - Boosting/2. Ensemble technique 3a - Boosting in Python.srt 5KB 14. Simple Decision Trees/8. Dummy Variable creation in Python.srt 5KB 19. Maximum Margin Classifier/2. The Concept of a Hyperplane.srt 5KB 14. Simple Decision Trees/15. Plotting decision tree in Python.srt 5KB 8. Classification Models Data Preparation/2. Data Import in Python.srt 5KB 4. Basics of Statistics/5. Measures of Dispersion.srt 5KB 40. Time Series - ARIMA model/2. ARIMA model - Basics.srt 5KB 6. Data Preprocessing/9. Outlier Treatment.srt 5KB 4. Basics of Statistics/1. Types of Data.srt 5KB 39. Time Series - Implementation in Python/6. Moving Average model -Basics.srt 5KB 28. CNN - Basics/3. Padding.srt 5KB 10. Logistic Regression/8. Confusion Matrix.srt 5KB 6. Data Preprocessing/11. Outlier Treatment in R.srt 5KB 8. Classification Models Data Preparation/8. Missing Value Imputation in Python.srt 5KB 8. Classification Models Data Preparation/7. Outlier Treatment in R.srt 5KB 6. Data Preprocessing/13. Missing Value Imputation in Python.srt 5KB 24. Introduction - Deep Learning/1. Introduction to Neural Networks and Course flow.srt 5KB 17. Ensemble technique 2 - Random Forests/4. Random Forest in R.srt 5KB 7. Linear Regression/16. Regression models other than OLS.srt 5KB 14. Simple Decision Trees/14. Evaluating model performance in Python.srt 5KB 3. Setting up R Studio and R crash course/4. Inputting data part 1 Inbuilt datasets of R.srt 5KB 34. Transfer Learning Basics/1. ILSVRC.srt 5KB 17. Ensemble technique 2 - Random Forests/1. Ensemble technique 2 - Random Forests.srt 5KB 38. Time Series - Important Concepts/2. Random Walk.srt 5KB 14. Simple Decision Trees/16. Pruning a tree.srt 5KB 1. Introduction/1. Introduction.srt 4KB 22. Creating Support Vector Machine Model in Python/13. Polynomial Kernel with Hyperparameter Tuning.srt 4KB 2. Setting up Python and Jupyter Notebook/5. Arithmetic operators in Python Python Basics.srt 4KB 18. Ensemble technique 3 - Boosting/4. Ensemble technique 3b - AdaBoost in Python.srt 4KB 8. Classification Models Data Preparation/10. Variable transformation and Deletion in Python.srt 4KB 14. Simple Decision Trees/12. Creating Decision tree in Python.srt 4KB 37. Time Series - Preprocessing in Python/6. Time Series - Upsampling and Downsampling.srt 4KB 14. Simple Decision Trees/9. Dependent- Independent Data split in Python.srt 4KB 22. Creating Support Vector Machine Model in Python/4. X-y Split.srt 4KB 6. Data Preprocessing/12. Missing Value Imputation.srt 4KB 10. Logistic Regression/3. Training a Simple Logistic model in R.srt 4KB 30. Creating CNN model in R/6. Comparison - Pooling vs Without Pooling in R.srt 4KB 6. Data Preprocessing/1. Gathering Business Knowledge.srt 4KB 26. ANN in Python/2. Installing Tensorflow and Keras.srt 4KB 8. Classification Models Data Preparation/9. Missing Value imputation in R.srt 4KB 6. Data Preprocessing/14. Missing Value imputation in R.srt 4KB 6. Data Preprocessing/6. Univariate analysis and EDD.srt 4KB 6. Data Preprocessing/15. Seasonality in Data.srt 4KB 9. The Three classification models/1. Three Classifiers and the problem statement.srt 4KB 6. Data Preprocessing/2. Data Exploration.srt 4KB 26. ANN in Python/1. Keras and Tensorflow.srt 4KB 2. Setting up Python and Jupyter Notebook/2. This is a milestone!.srt 4KB 14. Simple Decision Trees/7. Missing value treatment in Python.srt 4KB 39. Time Series - Implementation in Python/3. Auto Regression Model - Basics.srt 4KB 14. Simple Decision Trees/3. The stopping criteria for controlling tree growth.srt 4KB 19. Maximum Margin Classifier/3. Maximum Margin Classifier.srt 3KB 3. Setting up R Studio and R crash course/5. Inputting data part 2 Manual data entry.srt 3KB 14. Simple Decision Trees/4. The Data set for this part.srt 3KB 22. Creating Support Vector Machine Model in Python/2. The Data set for the Regression problem.srt 3KB 34. Transfer Learning Basics/4. GoogLeNet.srt 3KB 4. Basics of Statistics/2. Types of Statistics.srt 3KB 32. Project Creating CNN model from scratch/3. Project in R - Training.srt 3KB 30. Creating CNN model in R/4. Compiling and training.srt 3KB 28. CNN - Basics/2. Stride.srt 3KB 27. ANN in R/1. Installing Keras and Tensorflow.srt 3KB 10. Logistic Regression/5. Logistic with multiple predictors.srt 3KB 36. Time Series Analysis and Forecasting/3. Forecasting model creation - Steps.srt 3KB 31. Project Creating CNN model from scratch in Python/5. Project in Python - model results.srt 3KB 7. Linear Regression/22. Heteroscedasticity.srt 3KB 8. Classification Models Data Preparation/3. Importing the dataset into R.srt 3KB 6. Data Preprocessing/5. Importing the dataset into R.srt 3KB 37. Time Series - Preprocessing in Python/8. Time Series - Power Transformation.srt 3KB 10. Logistic Regression/11. Evaluating model performance in Python.srt 3KB 2. Setting up Python and Jupyter Notebook/1. Installing Python and Anaconda.srt 3KB 19. Maximum Margin Classifier/4. Limitations of Maximum Margin Classifier.srt 3KB 32. Project Creating CNN model from scratch/6. Project in R - Validation Performance.srt 3KB 11. Linear Discriminant Analysis (LDA)/2. LDA in Python.srt 3KB 38. Time Series - Important Concepts/1. White Noise.srt 3KB 32. Project Creating CNN model from scratch/4. Project in R - Model Performance.srt 3KB 36. Time Series Analysis and Forecasting/2. Time Series Forecasting - Use cases.srt 3KB 30. Creating CNN model in R/1. CNN on MNIST Fashion Dataset - Model Architecture.srt 2KB 36. Time Series Analysis and Forecasting/1. Introduction.srt 2KB 37. Time Series - Preprocessing in Python/10. Exponential Smoothing.srt 2KB 26. ANN in Python/5. Different ways to create ANN using Keras.srt 2KB 34. Transfer Learning Basics/3. VGG16NET.srt 2KB 15. Simple Classification Tree/2. The Data set for Classification problem.srt 2KB 22. Creating Support Vector Machine Model in Python/8. The Data set for the Classification problem.srt 2KB 22. Creating Support Vector Machine Model in Python/10. Classification model - Standardizing the data.srt 2KB 34. Transfer Learning Basics/2. LeNET.srt 2KB 19. Maximum Margin Classifier/1. Content flow.srt 2KB 42. Bonus Section/1. The final milestone!.srt 2KB 41. Time Series - SARIMA model/3. Stationary time Series.srt 2KB 15. Simple Classification Tree/6. Advantages and Disadvantages of Decision Trees.srt 2KB 7. Linear Regression/1. The Problem Statement.srt 2KB 20. Support Vector Classifier/2. Limitations of Support Vector Classifiers.srt 2KB 42. Bonus Section/2. Congratulations & About your certificate.html 2KB 22. Creating Support Vector Machine Model in Python/1. Regression and Classification Models.srt 810B 23. Creating Support Vector Machine Model in R/3. More about test-train split.html 559B 1. Introduction/2. Course Resources.html 370B 31. Project Creating CNN model from scratch in Python/2. Data for the project.html 232B 0. Websites you may like/[FCS Forum].url 133B 6. Data Preprocessing/26. Quiz.html 130B 0. Websites you may like/[FreeCourseSite.com].url 127B 0. Websites you may like/[CourseClub.ME].url 122B