[] Udemy - CNN for Computer Vision with Keras and TensorFlow in R 收录时间:2021-01-13 16:45:08 文件大小:3GB 下载次数:1 最近下载:2021-01-13 16:45:08 磁力链接: magnet:?xt=urn:btih:b9e318e35b8ad3985af101d3f9ea9fa132c48a43 立即下载 复制链接 文件列表 11. Saving and Restoring Models/1. Saving - Restoring Models and Using Callbacks.mp4 216MB 9. R - Building and training the Model/1. Building, Compiling and Training.mp4 131MB 4. Neural Networks - Stacking cells to create network/3. Back Propagation.mp4 122MB 8. R - Dataset for classification problem/1. Data Normalization and Test-Train Split.mp4 112MB 19. Transfer Learning in R/1. Project - Transfer Learning - VGG16 (Implementation).mp4 102MB 9. R - Building and training the Model/2. Evaluating and Predicting.mp4 99MB 2. Setting Up R Studio and R crash course/7. Creating Barplots in R.mp4 97MB 16. Project Creating CNN model from scratch/3. Project in R - Data Preprocessing.mp4 88MB 10. The NeuralNets Package/1. ANN with NeuralNets Package.mp4 84MB 2. Setting Up R Studio and R crash course/3. Packages in R.mp4 83MB 14. Creating CNN model in R/3. Creating Model Architecture.mp4 72MB 14. Creating CNN model in R/5. Model Performance.mp4 68MB 13. CNN - Basics/5. Channels.mp4 68MB 14. Creating CNN model in R/2. Data Preprocessing.mp4 67MB 19. Transfer Learning in R/2. Project - Transfer Learning - VGG16 (Performance).mp4 64MB 5. Important concepts Common Interview questions/1. Some Important Concepts.mp4 62MB 12. Hyperparameter Tuning/1. Hyperparameter Tuning.mp4 61MB 4. Neural Networks - Stacking cells to create network/2. Gradient Descent.mp4 60MB 2. Setting Up R Studio and R crash course/6. Inputting data part 3 Importing from CSV or Text files.mp4 60MB 17. Project Data Augmentation for avoiding overfitting/1. Project in R - Data Augmentation.mp4 56MB 13. CNN - Basics/4. Filters and Feature maps.mp4 53MB 13. CNN - Basics/1. CNN Introduction.mp4 51MB 16. Project Creating CNN model from scratch/1. Project - Introduction.mp4 49MB 13. CNN - Basics/6. PoolingLayer.mp4 47MB 16. Project Creating CNN model from scratch/4. CNN Project in R - Structure and Compile.mp4 46MB 6. Standard Model Parameters/1. Hyperparameters.mp4 45MB 3. Single Cells - Perceptron and Sigmoid Neuron/1. Perceptron.mp4 45MB 15. Analyzing impact of Pooling layer/1. Comparison - Pooling vs Without Pooling in R.mp4 45MB 2. Setting Up R Studio and R crash course/8. Creating Histograms in R.mp4 42MB 2. Setting Up R Studio and R crash course/4. Inputting data part 1 Inbuilt datasets of R.mp4 41MB 4. Neural Networks - Stacking cells to create network/1. Basic Terminologies.mp4 40MB 2. Setting Up R Studio and R crash course/2. Basics of R and R studio.mp4 39MB 2. Setting Up R Studio and R crash course/1. Installing R and R studio.mp4 36MB 3. Single Cells - Perceptron and Sigmoid Neuron/2. Activation Functions.mp4 35MB 14. Creating CNN model in R/4. Compiling and training.mp4 32MB 13. CNN - Basics/3. Padding.mp4 32MB 18. Transfer Learning Basics/5. Transfer Learning.mp4 30MB 2. Setting Up R Studio and R crash course/5. Inputting data part 2 Manual data entry.mp4 26MB 16. Project Creating CNN model from scratch/5. Project in R - Training.mp4 25MB 17. Project Data Augmentation for avoiding overfitting/2. Project in R - Validation Performance.mp4 24MB 16. Project Creating CNN model from scratch/6. Project in R - Model Performance.mp4 23MB 7. Tensorflow and Keras/2. Installing Keras and Tensorflow.mp4 23MB 1. Introduction/1. Introduction.mp4 22MB 18. Transfer Learning Basics/4. GoogLeNet.mp4 21MB 18. Transfer Learning Basics/1. ILSVRC.mp4 21MB 13. CNN - Basics/2. Stride.mp4 17MB 7. Tensorflow and Keras/1. Keras and Tensorflow.mp4 15MB 2. Setting Up R Studio and R crash course/3. Packages in R.srt 14MB 18. Transfer Learning Basics/3. VGG16NET.mp4 10MB 1. Introduction/2.1 ST Academy - CNN course files R.zip 8MB 14. Creating CNN model in R/1. CNN on MNIST Fashion Dataset - Model Architecture.mp4 7MB 18. Transfer Learning Basics/2. LeNET.mp4 7MB 4. Neural Networks - Stacking cells to create network/3. Back Propagation.srt 23KB 11. Saving and Restoring Models/1. Saving - Restoring Models and Using Callbacks.srt 20KB 9. R - Building and training the Model/1. Building, Compiling and Training.srt 15KB 2. Setting Up R Studio and R crash course/7. Creating Barplots in R.srt 13KB 19. Transfer Learning in R/1. Project - Transfer Learning - VGG16 (Implementation).srt 13KB 5. Important concepts Common Interview questions/1. Some Important Concepts.srt 13KB 8. R - Dataset for classification problem/1. Data Normalization and Test-Train Split.srt 12KB 4. Neural Networks - Stacking cells to create network/2. Gradient Descent.srt 12KB 16. Project Creating CNN model from scratch/3. Project in R - Data Preprocessing.srt 11KB 2. Setting Up R Studio and R crash course/2. Basics of R and R studio.srt 11KB 3. Single Cells - Perceptron and Sigmoid Neuron/1. Perceptron.srt 10KB 4. Neural Networks - Stacking cells to create network/1. Basic Terminologies.srt 10KB 12. Hyperparameter Tuning/1. Hyperparameter Tuning.srt 9KB 9. R - Building and training the Model/2. Evaluating and Predicting.srt 9KB 6. Standard Model Parameters/1. Hyperparameters.srt 9KB 19. Transfer Learning in R/2. Project - Transfer Learning - VGG16 (Performance).srt 8KB 3. Single Cells - Perceptron and Sigmoid Neuron/2. Activation Functions.srt 8KB 10. The NeuralNets Package/1. ANN with NeuralNets Package.srt 8KB 17. Project Data Augmentation for avoiding overfitting/1. Project in R - Data Augmentation.srt 7KB 14. Creating CNN model in R/2. Data Preprocessing.srt 7KB 16. Project Creating CNN model from scratch/1. Project - Introduction.srt 7KB 13. CNN - Basics/4. Filters and Feature maps.srt 7KB 2. Setting Up R Studio and R crash course/6. Inputting data part 3 Importing from CSV or Text files.srt 6KB 14. Creating CNN model in R/5. Model Performance.srt 6KB 14. Creating CNN model in R/3. Creating Model Architecture.srt 6KB 2. Setting Up R Studio and R crash course/8. Creating Histograms in R.srt 6KB 13. CNN - Basics/5. Channels.srt 6KB 2. Setting Up R Studio and R crash course/1. Installing R and R studio.srt 6KB 18. Transfer Learning Basics/5. Transfer Learning.srt 5KB 16. Project Creating CNN model from scratch/4. CNN Project in R - Structure and Compile.srt 5KB 13. CNN - Basics/6. PoolingLayer.srt 5KB 13. CNN - Basics/3. Padding.srt 5KB 18. Transfer Learning Basics/1. ILSVRC.srt 4KB 15. Analyzing impact of Pooling layer/1. Comparison - Pooling vs Without Pooling in R.srt 4KB 2. Setting Up R Studio and R crash course/4. Inputting data part 1 Inbuilt datasets of R.srt 4KB 1. Introduction/1. Introduction.srt 4KB 7. Tensorflow and Keras/1. Keras and Tensorflow.srt 4KB 14. Creating CNN model in R/4. Compiling and training.srt 3KB 18. Transfer Learning Basics/4. GoogLeNet.srt 3KB 7. Tensorflow and Keras/2. Installing Keras and Tensorflow.srt 3KB 2. Setting Up R Studio and R crash course/5. Inputting data part 2 Manual data entry.srt 3KB 16. Project Creating CNN model from scratch/5. Project in R - Training.srt 3KB 13. CNN - Basics/2. Stride.srt 3KB 17. Project Data Augmentation for avoiding overfitting/2. Project in R - Validation Performance.srt 3KB 16. Project Creating CNN model from scratch/6. Project in R - Model Performance.srt 3KB 18. Transfer Learning Basics/3. VGG16NET.srt 2KB 18. Transfer Learning Basics/2. LeNET.srt 2KB Readme.txt 962B 16. Project Creating CNN model from scratch/2. Data for the project.html 232B 4. Neural Networks - Stacking cells to create network/4. Quiz.html 165B 5. Important concepts Common Interview questions/2. Quiz.html 165B 16. Project Creating CNN model from scratch/2.1 Download the project dataset.html 127B 1. Introduction/2. Course resources.html 82B [GigaCourse.com].url 49B 14. Creating CNN model in R/1. CNN on MNIST Fashion Dataset - Model Architecture.srt 0B