[] Udemy- The Complete Machine Learning Course with Python 收录时间:2021-06-11 13:12:26 文件大小:7GB 下载次数:1 最近下载:2021-06-11 13:12:25 磁力链接: magnet:?xt=urn:btih:be1c9559ddc8efb105665a8d97abca77b961d8c9 立即下载 复制链接 文件列表 6. Tree/6. Project HR.mp4 178MB 7. Ensemble Machine Learning/2. Bagging.mp4 165MB 12. Appendix A1 Foundations of Deep Learning/4. What is Deep Learning.mp4 156MB 3. Regression/2. EDA.mp4 152MB 11. Deep Learning/3. Motivational Example - Project MNIST.mp4 145MB 11. Deep Learning/1. Estimating Simple Function with Neural Networks.mp4 144MB 13. Computer Vision and Convolutional Neural Network (CNN)/4. Visualizing CNN.mp4 142MB 3. Regression/15. Data Preprocessing.mp4 136MB 13. Computer Vision and Convolutional Neural Network (CNN)/11. Training Your CNN 2.mp4 129MB 3. Regression/19. CV Illustration.mp4 127MB 10. Unsupervised Learning Clustering/1. Clustering.mp4 126MB 3. Regression/9. Multiple Regression 1.mp4 126MB 13. Computer Vision and Convolutional Neural Network (CNN)/10. Training Your CNN 1.mp4 125MB 4. Classification/1. Logistic Regression.mp4 120MB 3. Regression/7. Robust Regression.mp4 119MB 13. Computer Vision and Convolutional Neural Network (CNN)/16. Feature Extraction.mp4 111MB 3. Regression/12. Polynomial Regression.mp4 111MB 4. Classification/3. Understanding MNIST.mp4 109MB 3. Regression/4. Correlation Analysis and Feature Selection.mp4 105MB 4. Classification/10. Precision Recall Tradeoff.mp4 102MB 3. Regression/8. Evaluate Regression Model Performance.mp4 100MB 13. Computer Vision and Convolutional Neural Network (CNN)/15. Transfer Learning.mp4 97MB 2. Getting Started with Anaconda/6. Iris Project 4 Visualization.mp4 93MB 3. Regression/10. Multiple Regression 2.mp4 91MB 2. Getting Started with Anaconda/3. Iris Project 1 Working with Error Messages.mp4 90MB 12. Appendix A1 Foundations of Deep Learning/9. Tensor Operations.mp4 89MB 13. Computer Vision and Convolutional Neural Network (CNN)/9. Pooling, Flatten, Dense.mp4 88MB 13. Computer Vision and Convolutional Neural Network (CNN)/7. Layer - Filter.mp4 84MB 5. Support Vector Machine (SVM)/2. Linear SVM Classification.mp4 81MB 7. Ensemble Machine Learning/3. Random Forests and Extra-Trees.mp4 80MB 13. Computer Vision and Convolutional Neural Network (CNN)/13. Model Performance Comparison.mp4 80MB 3. Regression/6. Five Steps Machine Learning Process.mp4 77MB 12. Appendix A1 Foundations of Deep Learning/3. Learning Representations.mp4 77MB 3. Regression/5. Linear Regression with Scikit-Learn.mp4 77MB 11. Deep Learning/5. Natural Language Processing - Binary Classification.mp4 76MB 8. k-Nearest Neighbours (kNN)/2. Project Cancer Detection.mp4 76MB 11. Deep Learning/4. Binary Classification Problem.mp4 72MB 5. Support Vector Machine (SVM)/4. Radial Basis Function.mp4 70MB 12. Appendix A1 Foundations of Deep Learning/13. Over and Under Fitting.mp4 70MB 3. Regression/16. Variance-Bias Trade Off.mp4 69MB 6. Tree/7. Project HR with Google Colab.mp4 67MB 13. Computer Vision and Convolutional Neural Network (CNN)/3. Motivational Example.mp4 66MB 2. Getting Started with Anaconda/4. Iris Project 2 Reading CSV Data into Memory.mp4 65MB 13. Computer Vision and Convolutional Neural Network (CNN)/1. Outline.mp4 64MB 8. k-Nearest Neighbours (kNN)/1. kNN Introduction.mp4 63MB 3. Regression/13. Dealing with Non-linear Relationships.mp4 63MB 5. Support Vector Machine (SVM)/5. Support Vector Regression.mp4 60MB 7. Ensemble Machine Learning/8. Project HR - Human Resources Analytics.mp4 59MB 10. Unsupervised Learning Clustering/2. k_Means Clustering.mp4 58MB 4. Classification/4. SGD.mp4 57MB 3. Regression/17. Learning Curve.mp4 56MB 2. Getting Started with Anaconda/5. Iris Project 3 Loading data from Seaborn.mp4 56MB 12. Appendix A1 Foundations of Deep Learning/10. Gradient Based Optimization.mp4 55MB 6. Tree/3. Visualizing Boundary.mp4 55MB 4. Classification/6. Confusion Matrix.mp4 55MB 1. Introduction/1. What Does the Course Cover.mp4 54MB 4. Classification/12. ROC.mp4 52MB 4. Classification/5. Performance Measure and Stratified k-Fold.mp4 52MB 6. Tree/2. Training and Visualizing a Decision Tree.mp4 51MB 2. Getting Started with Anaconda/2. Hello World.mp4 51MB 7. Ensemble Machine Learning/4. AdaBoost.mp4 50MB 8. k-Nearest Neighbours (kNN)/4. Project Cancer Detection Part 1.mp4 49MB 9. Unsupervised Learning Dimensionality Reduction/2. PCA Introduction.mp4 49MB 3. Regression/1. Scikit-Learn.mp4 48MB 3. Regression/18. Cross Validation.mp4 48MB 9. Unsupervised Learning Dimensionality Reduction/3. Project Wine.mp4 48MB 7. Ensemble Machine Learning/9. Ensemble of Ensembles Part 1.mp4 46MB 3. Regression/11. Regularized Regression.mp4 44MB 6. Tree/1. Introduction to Decision Tree.mp4 44MB 13. Computer Vision and Convolutional Neural Network (CNN)/2. Neural Network Revision.mp4 44MB 4. Classification/2. Introduction to Classification.mp4 42MB 12. Appendix A1 Foundations of Deep Learning/5. Learning Neural Networks.mp4 41MB 6. Tree/4. Tree Regression, Regularization and Over Fitting.mp4 40MB 2. Getting Started with Anaconda/1. Installing Applications and Creating Environment.mp4 38MB 5. Support Vector Machine (SVM)/1. Support Vector Machine (SVM) Concepts.mp4 38MB 7. Ensemble Machine Learning/10. Ensemble of ensembles Part 2.mp4 38MB 12. Appendix A1 Foundations of Deep Learning/12. Categories of Machine Learning.mp4 37MB 7. Ensemble Machine Learning/1. Ensemble Learning Methods Introduction.mp4 37MB 9. Unsupervised Learning Dimensionality Reduction/4. Kernel PCA.mp4 37MB 3. Regression/14. Feature Importance.mp4 36MB 6. Tree/5. End to End Modeling.mp4 36MB 13. Computer Vision and Convolutional Neural Network (CNN)/17. State of the Art Tools.mp4 35MB 7. Ensemble Machine Learning/7. XGBoost.mp4 35MB 5. Support Vector Machine (SVM)/3. Polynomial Kernel.mp4 35MB 9. Unsupervised Learning Dimensionality Reduction/6. LDA vs PCA.mp4 34MB 13. Computer Vision and Convolutional Neural Network (CNN)/8. Activation Function.mp4 32MB 9. Unsupervised Learning Dimensionality Reduction/1. Dimensionality Reduction Concept.mp4 31MB 9. Unsupervised Learning Dimensionality Reduction/7. Project Abalone.mp4 31MB 13. Computer Vision and Convolutional Neural Network (CNN)/5. Understanding CNN.mp4 30MB 13. Computer Vision and Convolutional Neural Network (CNN)/6. Layer - Input.mp4 29MB 13. Computer Vision and Convolutional Neural Network (CNN)/14. Data Augmentation.mp4 28MB 12. Appendix A1 Foundations of Deep Learning/14. Machine Learning Workflow.mp4 27MB 4. Classification/7. Precision.mp4 24MB 3. Regression/3. Correlation Analysis and Feature Selection.mp4 23MB 11. Deep Learning/2. Neural Network Architecture.mp4 22MB 7. Ensemble Machine Learning/6. XGBoost Installation.mp4 22MB 7. Ensemble Machine Learning/5. Gradient Boosting Machine.mp4 22MB 9. Unsupervised Learning Dimensionality Reduction/5. Kernel PCA Demo.mp4 21MB 4. Classification/11. Altering the Precision Recall Tradeoff.mp4 21MB 12. Appendix A1 Foundations of Deep Learning/2. Differences between Classical Programming and Machine Learning.mp4 21MB 4. Classification/8. Recall.mp4 20MB 12. Appendix A1 Foundations of Deep Learning/11. Getting Started with Neural Network and Deep Learning Libraries.mp4 19MB 12. Appendix A1 Foundations of Deep Learning/8. Tensors.mp4 17MB 12. Appendix A1 Foundations of Deep Learning/7. Building Block Introduction.mp4 14MB 12. Appendix A1 Foundations of Deep Learning/1. Introduction to Neural Networks.mp4 14MB 4. Classification/9. f1.mp4 12MB 13. Computer Vision and Convolutional Neural Network (CNN)/12. Loading Previously Trained Model.mp4 11MB 12. Appendix A1 Foundations of Deep Learning/6. Why Now.mp4 9MB 3. Regression/3.1 0305.zip.zip 2MB 8. k-Nearest Neighbours (kNN)/4.1 0805.zip.zip 41KB 6. Tree/6. Project HR.vtt 28KB 3. Regression/15. Data Preprocessing.vtt 25KB 11. Deep Learning/1. Estimating Simple Function with Neural Networks.vtt 24KB 11. Deep Learning/3. Motivational Example - Project MNIST.vtt 24KB 4. Classification/1. Logistic Regression.vtt 23KB 12. Appendix A1 Foundations of Deep Learning/4. What is Deep Learning.vtt 23KB 3. Regression/9. Multiple Regression 1.vtt 22KB 3. Regression/2. EDA.vtt 22KB 13. Computer Vision and Convolutional Neural Network (CNN)/11. Training Your CNN 2.vtt 22KB 8. k-Nearest Neighbours (kNN)/4. Project Cancer Detection Part 1.vtt 22KB 7. Ensemble Machine Learning/2. Bagging.vtt 21KB 4. Classification/10. Precision Recall Tradeoff.vtt 21KB 3. Regression/7. Robust Regression.vtt 20KB 3. Regression/19. CV Illustration.vtt 20KB 3. Regression/12. Polynomial Regression.vtt 20KB 12. Appendix A1 Foundations of Deep Learning/9. Tensor Operations.vtt 19KB 10. Unsupervised Learning Clustering/1. Clustering.vtt 19KB 13. Computer Vision and Convolutional Neural Network (CNN)/7. Layer - Filter.vtt 18KB 3. Regression/8. Evaluate Regression Model Performance.vtt 18KB 12. Appendix A1 Foundations of Deep Learning/13. Over and Under Fitting.vtt 17KB 4. Classification/3. Understanding MNIST.vtt 16KB 13. Computer Vision and Convolutional Neural Network (CNN)/4. Visualizing CNN.vtt 15KB 13. Computer Vision and Convolutional Neural Network (CNN)/10. Training Your CNN 1.vtt 15KB 3. Regression/5. Linear Regression with Scikit-Learn.vtt 15KB 2. Getting Started with Anaconda/3. Iris Project 1 Working with Error Messages.vtt 14KB 3. Regression/4. Correlation Analysis and Feature Selection.vtt 14KB 3. Regression/10. Multiple Regression 2.vtt 14KB 3. Regression/16. Variance-Bias Trade Off.vtt 14KB 13. Computer Vision and Convolutional Neural Network (CNN)/16. Feature Extraction.vtt 13KB 12. Appendix A1 Foundations of Deep Learning/10. Gradient Based Optimization.vtt 13KB 13. Computer Vision and Convolutional Neural Network (CNN)/9. Pooling, Flatten, Dense.vtt 13KB 2. Getting Started with Anaconda/2. Hello World.vtt 12KB 13. Computer Vision and Convolutional Neural Network (CNN)/15. Transfer Learning.vtt 12KB 5. Support Vector Machine (SVM)/2. Linear SVM Classification.vtt 12KB 11. Deep Learning/5. Natural Language Processing - Binary Classification.vtt 12KB 2. Getting Started with Anaconda/6. Iris Project 4 Visualization.vtt 12KB 12. Appendix A1 Foundations of Deep Learning/3. Learning Representations.vtt 12KB 11. Deep Learning/4. Binary Classification Problem.vtt 11KB 6. Tree/7. Project HR with Google Colab.vtt 11KB 12. Appendix A1 Foundations of Deep Learning/5. Learning Neural Networks.vtt 11KB 12. Appendix A1 Foundations of Deep Learning/12. Categories of Machine Learning.vtt 11KB 7. Ensemble Machine Learning/3. Random Forests and Extra-Trees.vtt 11KB 4. Classification/6. Confusion Matrix.vtt 11KB 8. k-Nearest Neighbours (kNN)/1. kNN Introduction.vtt 11KB 13. Computer Vision and Convolutional Neural Network (CNN)/13. Model Performance Comparison.vtt 11KB 4. Classification/4. SGD.vtt 11KB 3. Regression/13. Dealing with Non-linear Relationships.vtt 10KB 3. Regression/17. Learning Curve.vtt 10KB 2. Getting Started with Anaconda/4. Iris Project 2 Reading CSV Data into Memory.vtt 10KB 10. Unsupervised Learning Clustering/2. k_Means Clustering.vtt 10KB 8. k-Nearest Neighbours (kNN)/2. Project Cancer Detection.vtt 10KB 3. Regression/1. Scikit-Learn.vtt 10KB 2. Getting Started with Anaconda/5. Iris Project 3 Loading data from Seaborn.vtt 10KB 3. Regression/3. Correlation Analysis and Feature Selection.vtt 10KB 3. Regression/18. Cross Validation.vtt 10KB 7. Ensemble Machine Learning/8. Project HR - Human Resources Analytics.vtt 10KB 5. Support Vector Machine (SVM)/5. Support Vector Regression.vtt 9KB 13. Computer Vision and Convolutional Neural Network (CNN)/2. Neural Network Revision.vtt 9KB 3. Regression/6. Five Steps Machine Learning Process.vtt 9KB 6. Tree/3. Visualizing Boundary.vtt 9KB 5. Support Vector Machine (SVM)/4. Radial Basis Function.vtt 9KB 13. Computer Vision and Convolutional Neural Network (CNN)/3. Motivational Example.vtt 9KB 9. Unsupervised Learning Dimensionality Reduction/2. PCA Introduction.vtt 8KB 4. Classification/5. Performance Measure and Stratified k-Fold.vtt 8KB 5. Support Vector Machine (SVM)/1. Support Vector Machine (SVM) Concepts.vtt 8KB 6. Tree/1. Introduction to Decision Tree.vtt 8KB 7. Ensemble Machine Learning/4. AdaBoost.vtt 8KB 3. Regression/11. Regularized Regression.vtt 8KB 4. Classification/12. ROC.vtt 8KB 7. Ensemble Machine Learning/9. Ensemble of Ensembles Part 1.vtt 7KB 11. Deep Learning/2. Neural Network Architecture.vtt 7KB 6. Tree/2. Training and Visualizing a Decision Tree.vtt 7KB 9. Unsupervised Learning Dimensionality Reduction/3. Project Wine.vtt 7KB 13. Computer Vision and Convolutional Neural Network (CNN)/8. Activation Function.vtt 7KB 13. Computer Vision and Convolutional Neural Network (CNN)/5. Understanding CNN.vtt 7KB 13. Computer Vision and Convolutional Neural Network (CNN)/6. Layer - Input.vtt 6KB 9. Unsupervised Learning Dimensionality Reduction/4. Kernel PCA.vtt 6KB 2. Getting Started with Anaconda/1. Installing Applications and Creating Environment.vtt 6KB 13. Computer Vision and Convolutional Neural Network (CNN)/17. State of the Art Tools.vtt 6KB 9. Unsupervised Learning Dimensionality Reduction/6. LDA vs PCA.vtt 6KB 4. Classification/2. Introduction to Classification.vtt 6KB 7. Ensemble Machine Learning/10. Ensemble of ensembles Part 2.vtt 6KB 7. Ensemble Machine Learning/1. Ensemble Learning Methods Introduction.vtt 6KB 5. Support Vector Machine (SVM)/3. Polynomial Kernel.vtt 5KB 3. Regression/14. Feature Importance.vtt 5KB 6. Tree/5. End to End Modeling.vtt 5KB 12. Appendix A1 Foundations of Deep Learning/14. Machine Learning Workflow.vtt 5KB 6. Tree/4. Tree Regression, Regularization and Over Fitting.vtt 5KB 9. Unsupervised Learning Dimensionality Reduction/1. Dimensionality Reduction Concept.vtt 5KB 12. Appendix A1 Foundations of Deep Learning/11. Getting Started with Neural Network and Deep Learning Libraries.vtt 5KB 7. Ensemble Machine Learning/7. XGBoost.vtt 5KB 12. Appendix A1 Foundations of Deep Learning/7. Building Block Introduction.vtt 5KB 12. Appendix A1 Foundations of Deep Learning/2. Differences between Classical Programming and Machine Learning.vtt 5KB 12. Appendix A1 Foundations of Deep Learning/8. Tensors.vtt 4KB 9. Unsupervised Learning Dimensionality Reduction/7. Project Abalone.vtt 4KB 13. Computer Vision and Convolutional Neural Network (CNN)/1. Outline.vtt 4KB 4. Classification/7. Precision.vtt 4KB 4. Classification/8. Recall.vtt 4KB 9. Unsupervised Learning Dimensionality Reduction/5. Kernel PCA Demo.vtt 4KB 7. Ensemble Machine Learning/5. Gradient Boosting Machine.vtt 4KB 4. Classification/11. Altering the Precision Recall Tradeoff.vtt 3KB 13. Computer Vision and Convolutional Neural Network (CNN)/14. Data Augmentation.vtt 3KB 12. Appendix A1 Foundations of Deep Learning/6. Why Now.vtt 3KB 1. Introduction/1. What Does the Course Cover.vtt 3KB 7. Ensemble Machine Learning/6. XGBoost Installation.vtt 3KB 12. Appendix A1 Foundations of Deep Learning/1. Introduction to Neural Networks.vtt 3KB 4. Classification/9. f1.vtt 2KB 1. Introduction/2. How to Succeed in This Course.html 2KB 1. Introduction/3. Project Files and Resources.html 2KB 13. Computer Vision and Convolutional Neural Network (CNN)/12. Loading Previously Trained Model.vtt 2KB 8. k-Nearest Neighbours (kNN)/3. Addition Materials.html 335B