[] Udemy - Machine Learning, Deep Learning and Bayesian Learning 收录时间:2022-02-28 08:14:16 文件大小:6GB 下载次数:1 最近下载:2022-02-28 08:14:16 磁力链接: magnet:?xt=urn:btih:c2359944f95bef3feaa0c383b869058ed14a8020 立即下载 复制链接 文件列表 03 - Machine Learning Numpy + Scikit Learn/012 CART part 2.mp4 166MB 12 - Pixel Level Segmentation (Semantic Segmentation) with PyTorch/009 Semantic Segmentation training with PyTorch Lightning.mp4 130MB 04 - Machine Learning Classification + Time Series + Model Diagnostics/005 Titanic dataset.mp4 116MB 09 - Deep Learning Recurrent Neural Nets/010 Sequence to Sequence models Prediction step.mp4 105MB 13 - Deep Learning Transformers and BERT/008 Pytorch Lightning + DistilBERT for classification.mp4 103MB 05 - Unsupervised Learning/002 Fashion MNIST PCA.mp4 102MB 09 - Deep Learning Recurrent Neural Nets/005 Deep Learning - Long Short Term Memory (LSTM) Nets.mp4 91MB 03 - Machine Learning Numpy + Scikit Learn/009 Linear Regresson Part 1.mp4 91MB 04 - Machine Learning Classification + Time Series + Model Diagnostics/007 Sklearn classification.mp4 90MB 04 - Machine Learning Classification + Time Series + Model Diagnostics/019 Area Under Curve (AUC) Part 1.mp4 84MB 09 - Deep Learning Recurrent Neural Nets/008 Sequence to Sequence Introduction + Data Prep.mp4 80MB 10 - Deep Learning PyTorch Introduction/006 Deep Learning with Pytorch Stochastic Gradient Descent.mp4 79MB 03 - Machine Learning Numpy + Scikit Learn/004 Kmeans part 1.mp4 78MB 04 - Machine Learning Classification + Time Series + Model Diagnostics/012 FB Prophet part 1.mp4 78MB 06 - Natural Language Processing + Regularization/009 Feature Extraction with Spacy (using Pandas).mp4 76MB 09 - Deep Learning Recurrent Neural Nets/007 Transfer Learning - GLOVE vectors.mp4 75MB 03 - Machine Learning Numpy + Scikit Learn/010 Linear Regression Part 2.mp4 72MB 14 - Bayesian Learning and probabilistic programming/005 Coin Toss Example with Pymc3.mp4 71MB 14 - Bayesian Learning and probabilistic programming/004 Bayesian learning Population estimation pymc3 way.mp4 71MB 08 - Deep Learning (TensorFlow) - Convolutional Neural Nets/008 Nose Tip detection with CNNs.mp4 69MB 03 - Machine Learning Numpy + Scikit Learn/015 Gradient Boosted Machines.mp4 68MB 12 - Pixel Level Segmentation (Semantic Segmentation) with PyTorch/006 PyTorch Hooks Step through with breakpoints.mp4 68MB 12 - Pixel Level Segmentation (Semantic Segmentation) with PyTorch/007 PyTorch Weighted CrossEntropy Loss.mp4 65MB 03 - Machine Learning Numpy + Scikit Learn/005 Kmeans part 2.mp4 63MB 02 - Basic python + Pandas + Plotting/005 Numpy functions.mp4 62MB 14 - Bayesian Learning and probabilistic programming/007 Bayesian Linear Regression with pymc3.mp4 60MB 07 - Deep Learning/009 Softmax theory.mp4 58MB 04 - Machine Learning Classification + Time Series + Model Diagnostics/018 Stratified K Fold.mp4 58MB 11 - Deep Learning Transfer Learning with PyTorch Lightning/009 Data Augmentation with Torchvision Transforms.mp4 57MB 07 - Deep Learning/007 MNIST and Softmax.mp4 56MB 14 - Bayesian Learning and probabilistic programming/009 Bayesian Rolling regression - pymc3 way.mp4 55MB 07 - Deep Learning/011 Batch Norm Theory.mp4 54MB 04 - Machine Learning Classification + Time Series + Model Diagnostics/017 Cross Validation.mp4 54MB 10 - Deep Learning PyTorch Introduction/005 Deep Learning with Pytorch Loss functions.mp4 52MB 10 - Deep Learning PyTorch Introduction/010 Deep Learning Intro to Pytorch Lightning.mp4 52MB 04 - Machine Learning Classification + Time Series + Model Diagnostics/008 Dealing with missing values.mp4 51MB 11 - Deep Learning Transfer Learning with PyTorch Lightning/006 PyTorch Lightning Trainer + Model evaluation.mp4 50MB 14 - Bayesian Learning and probabilistic programming/003 Bayes rule for population mean estimation.mp4 50MB 02 - Basic python + Pandas + Plotting/024 Seaborn + pair plots.mp4 50MB 01 - Introduction/002 How to tackle this course.mp4 49MB 13 - Deep Learning Transformers and BERT/007 Distilbert (Smaller BERT) model.mp4 49MB 05 - Unsupervised Learning/004 Other clustering methods.mp4 48MB 06 - Natural Language Processing + Regularization/016 Ridge regression (L2 penalised regression).mp4 47MB 04 - Machine Learning Classification + Time Series + Model Diagnostics/011 Loss functions.mp4 46MB 06 - Natural Language Processing + Regularization/005 NLTK + Stemming.mp4 46MB 02 - Basic python + Pandas + Plotting/020 Plot multiple lines.mp4 45MB 09 - Deep Learning Recurrent Neural Nets/003 Word2Vec keras Model API.mp4 45MB 08 - Deep Learning (TensorFlow) - Convolutional Neural Nets/003 Keras Conv2D layer.mp4 44MB 14 - Bayesian Learning and probabilistic programming/012 Variational Bayes Linear Classification.mp4 44MB 09 - Deep Learning Recurrent Neural Nets/001 Word2vec and Embeddings.mp4 44MB 03 - Machine Learning Numpy + Scikit Learn/003 Gradient Descent.mp4 43MB 07 - Deep Learning/004 Tensorflow + Keras demo problem 1.mp4 43MB 01 - Introduction/003 Installations and sign ups.mp4 43MB 02 - Basic python + Pandas + Plotting/013 Pandas loc and iloc.mp4 42MB 01 - Introduction/001 Introduction.mp4 42MB 02 - Basic python + Pandas + Plotting/011 Pandas simple functions.mp4 38MB 03 - Machine Learning Numpy + Scikit Learn/014 Random Forest Code.mp4 37MB 14 - Bayesian Learning and probabilistic programming/002 Bayesian Learning Distributions.mp4 36MB 03 - Machine Learning Numpy + Scikit Learn/008 Intro.mp4 35MB 10 - Deep Learning PyTorch Introduction/003 Pytorch Dataset and DataLoaders.mp4 35MB 06 - Natural Language Processing + Regularization/004 Financial News Sentiment Classifier.mp4 34MB 10 - Deep Learning PyTorch Introduction/008 Pytorch Model API.mp4 33MB 06 - Natural Language Processing + Regularization/008 Spacy intro.mp4 33MB 06 - Natural Language Processing + Regularization/011 Over-sampling.mp4 33MB 07 - Deep Learning/006 First example with Relu.mp4 33MB 02 - Basic python + Pandas + Plotting/015 Pandas map and apply.mp4 31MB 06 - Natural Language Processing + Regularization/018 L1 Penalised Regression (Lasso).mp4 31MB 09 - Deep Learning Recurrent Neural Nets/009 Sequence to Sequence model + Keras Model API.mp4 30MB 14 - Bayesian Learning and probabilistic programming/010 Bayesian Rolling Regression - forecasting.mp4 30MB 15 - Model Deployment/004 FastAPI serving model.mp4 29MB 13 - Deep Learning Transformers and BERT/006 Tokenizers and data prep for BERT models.mp4 29MB 13 - Deep Learning Transformers and BERT/003 Encoder Transformer Models The Maths.mp4 29MB 09 - Deep Learning Recurrent Neural Nets/002 Kaggle + Word2Vec.mp4 28MB 02 - Basic python + Pandas + Plotting/004 Python functions (methods).mp4 28MB 08 - Deep Learning (TensorFlow) - Convolutional Neural Nets/007 Cifar-10.mp4 27MB 04 - Machine Learning Classification + Time Series + Model Diagnostics/004 Theory part 2 + code.mp4 27MB 03 - Machine Learning Numpy + Scikit Learn/006 Broadcasting.mp4 27MB 01 - Introduction/30889860-course-code-material.zip 26MB 12 - Pixel Level Segmentation (Semantic Segmentation) with PyTorch/001 Introduction.mp4 25MB 06 - Natural Language Processing + Regularization/017 S&P500 data preparation for L1 loss.mp4 25MB 12 - Pixel Level Segmentation (Semantic Segmentation) with PyTorch/005 PyTorch Hooks.mp4 25MB 04 - Machine Learning Classification + Time Series + Model Diagnostics/013 FB Prophet part 2.mp4 24MB 06 - Natural Language Processing + Regularization/010 Classification Example.mp4 24MB 08 - Deep Learning (TensorFlow) - Convolutional Neural Nets/005 Dropout theory and code.mp4 24MB 13 - Deep Learning Transformers and BERT/002 The illustrated Transformer (blogpost by Jay Alammar).mp4 24MB 06 - Natural Language Processing + Regularization/019 L1 L2 Penalty theory why it works.mp4 23MB 07 - Deep Learning/003 DL theory part 2.mp4 23MB 05 - Unsupervised Learning/003 K-means.mp4 22MB 02 - Basic python + Pandas + Plotting/012 Pandas Subsetting.mp4 22MB 02 - Basic python + Pandas + Plotting/002 Basic Data Structures.mp4 22MB 02 - Basic python + Pandas + Plotting/021 Histograms.mp4 22MB 11 - Deep Learning Transfer Learning with PyTorch Lightning/015 WandB for logging experiments.mp4 22MB 15 - Model Deployment/006 Streamlit functions.mp4 21MB 05 - Unsupervised Learning/001 Principal Component Analysis (PCA) theory.mp4 21MB 05 - Unsupervised Learning/006 Gaussian Mixture Models (GMM) theory.mp4 20MB 03 - Machine Learning Numpy + Scikit Learn/011 Classification and Regression Trees.mp4 20MB 08 - Deep Learning (TensorFlow) - Convolutional Neural Nets/002 Fashion MNIST feed forward net for benchmarking.mp4 20MB 04 - Machine Learning Classification + Time Series + Model Diagnostics/020 Area Under Curve (AUC) Part 2.mp4 19MB 04 - Machine Learning Classification + Time Series + Model Diagnostics/016 Overfitting.mp4 19MB 09 - Deep Learning Recurrent Neural Nets/004 Recurrent Neural Nets - Theory.mp4 19MB 12 - Pixel Level Segmentation (Semantic Segmentation) with PyTorch/002 Coco Dataset + Augmentations for Segmentation with Torchvision.mp4 19MB 02 - Basic python + Pandas + Plotting/003 Dictionaries.mp4 19MB 15 - Model Deployment/007 CLIP model.mp4 19MB 02 - Basic python + Pandas + Plotting/022 Scatter Plots.mp4 19MB 02 - Basic python + Pandas + Plotting/016 Pandas groupby.mp4 18MB 06 - Natural Language Processing + Regularization/014 MSE recap.mp4 18MB 14 - Bayesian Learning and probabilistic programming/001 Introduction and Terminology.mp4 18MB 08 - Deep Learning (TensorFlow) - Convolutional Neural Nets/006 MaxPool (and comparison to stride).mp4 18MB 08 - Deep Learning (TensorFlow) - Convolutional Neural Nets/004 Model fitting and discussion of results.mp4 17MB 07 - Deep Learning/002 DL theory part 1.mp4 17MB 14 - Bayesian Learning and probabilistic programming/006 Data Setup for Bayesian Linear Regression.mp4 17MB 07 - Deep Learning/010 Batch Norm.mp4 17MB 04 - Machine Learning Classification + Time Series + Model Diagnostics/014 Theory behind FB Prophet.mp4 17MB 12 - Pixel Level Segmentation (Semantic Segmentation) with PyTorch/008 Weights and Biases Logging images.mp4 16MB 11 - Deep Learning Transfer Learning with PyTorch Lightning/004 PyTorch transfer learning with ResNet.mp4 15MB 07 - Deep Learning/005 Activation functions.mp4 15MB 02 - Basic python + Pandas + Plotting/023 Subplots.mp4 15MB 11 - Deep Learning Transfer Learning with PyTorch Lightning/008 Cassava Leaf Dataset.mp4 15MB 14 - Bayesian Learning and probabilistic programming/008 Bayesian Rolling Regression - Problem setup.mp4 15MB 11 - Deep Learning Transfer Learning with PyTorch Lightning/003 PyTorch datasets + Torchvision.mp4 15MB 12 - Pixel Level Segmentation (Semantic Segmentation) with PyTorch/003 Unet Architecture overview.mp4 15MB 04 - Machine Learning Classification + Time Series + Model Diagnostics/006 Sklearn classification prelude.mp4 14MB 02 - Basic python + Pandas + Plotting/014 Pandas loc and iloc 2.mp4 14MB 06 - Natural Language Processing + Regularization/006 N-grams.mp4 14MB 16 - Final Thoughts/001 Some advice on your journey.mp4 14MB 12 - Pixel Level Segmentation (Semantic Segmentation) with PyTorch/004 PyTorch Model Architecture.mp4 14MB 04 - Machine Learning Classification + Time Series + Model Diagnostics/003 Theory part 1.mp4 14MB 05 - Unsupervised Learning/005 DBSCAN theory.mp4 13MB 02 - Basic python + Pandas + Plotting/006 Conditional statements.mp4 13MB 06 - Natural Language Processing + Regularization/007 Word (feature) importance.mp4 12MB 10 - Deep Learning PyTorch Introduction/002 Pytorch TensorDataset.mp4 12MB 02 - Basic python + Pandas + Plotting/007 For loops.mp4 12MB 15 - Model Deployment/003 FastAPI intro.mp4 12MB 04 - Machine Learning Classification + Time Series + Model Diagnostics/010 Intro.mp4 11MB 04 - Machine Learning Classification + Time Series + Model Diagnostics/002 Kaggle part 2.mp4 11MB 14 - Bayesian Learning and probabilistic programming/014 Minibatch Variational Bayes.mp4 11MB 10 - Deep Learning PyTorch Introduction/004 Deep Learning with PyTorch nn.Sequential models.mp4 11MB 06 - Natural Language Processing + Regularization/002 Stop words and Term Frequency.mp4 11MB 14 - Bayesian Learning and probabilistic programming/016 Deep Bayesian Networks - analysis.mp4 10MB 06 - Natural Language Processing + Regularization/001 Intro.mp4 10MB 07 - Deep Learning/008 Deep Learning Input Normalisation.mp4 10MB 10 - Deep Learning PyTorch Introduction/007 Deep Learning with Pytorch Optimizers.mp4 10MB 06 - Natural Language Processing + Regularization/015 L2 Loss Ridge Regression intro.mp4 10MB 11 - Deep Learning Transfer Learning with PyTorch Lightning/005 PyTorch Lightning Model.mp4 9MB 11 - Deep Learning Transfer Learning with PyTorch Lightning/002 Kaggle problem description.mp4 9MB 01 - Introduction/004 Jupyter Notebooks.mp4 9MB 14 - Bayesian Learning and probabilistic programming/011 Variational Bayes Intro.mp4 9MB 02 - Basic python + Pandas + Plotting/019 Line plot.mp4 9MB 11 - Deep Learning Transfer Learning with PyTorch Lightning/013 Cross Entropy Loss for Imbalanced Classes.mp4 8MB 11 - Deep Learning Transfer Learning with PyTorch Lightning/012 Setting up PyTorch Lightning for training.mp4 8MB 06 - Natural Language Processing + Regularization/013 Introduction.mp4 8MB 13 - Deep Learning Transformers and BERT/004 BERT - The theory.mp4 8MB 11 - Deep Learning Transfer Learning with PyTorch Lightning/011 Deep Learning Transfer Learning Model with ResNet.mp4 8MB 11 - Deep Learning Transfer Learning with PyTorch Lightning/010 Train vs Test Augmentations + DataLoader parameters.mp4 8MB 15 - Model Deployment/002 Saving Models.mp4 8MB 14 - Bayesian Learning and probabilistic programming/013 Variational Bayesian Inference Result Analysis.mp4 7MB 14 - Bayesian Learning and probabilistic programming/015 Deep Bayesian Networks.mp4 7MB 11 - Deep Learning Transfer Learning with PyTorch Lightning/014 PyTorch Test dataset setup and evaluation.mp4 7MB 13 - Deep Learning Transformers and BERT/005 Kaggle Multi-lingual Toxic Comment Classification Challenge.mp4 7MB 04 - Machine Learning Classification + Time Series + Model Diagnostics/001 Kaggle part 1.mp4 7MB 02 - Basic python + Pandas + Plotting/008 Dictionaries again.mp4 6MB 06 - Natural Language Processing + Regularization/003 Term Frequency - Inverse Document Frequency (Tf - Idf) theory.mp4 6MB 08 - Deep Learning (TensorFlow) - Convolutional Neural Nets/001 Intro.mp4 6MB 15 - Model Deployment/005 Streamlit Intro.mp4 6MB 09 - Deep Learning Recurrent Neural Nets/006 Deep Learning - Stacking LSTMs + GRUs.mp4 5MB 02 - Basic python + Pandas + Plotting/010 Intro.mp4 5MB 10 - Deep Learning PyTorch Introduction/009 Pytorch in GPUs.mp4 5MB 03 - Machine Learning Numpy + Scikit Learn/013 Random Forest theory.mp4 5MB 11 - Deep Learning Transfer Learning with PyTorch Lightning/001 Transfer Learning Introduction.mp4 4MB 11 - Deep Learning Transfer Learning with PyTorch Lightning/007 Deep Learning for Cassava Leaf Classification.mp4 4MB 13 - Deep Learning Transformers and BERT/001 Introduction to Transformers.mp4 3MB 02 - Basic python + Pandas + Plotting/001 Intro.mp4 3MB 02 - Basic python + Pandas + Plotting/31237618-03-0-plotting.zip 3MB 07 - Deep Learning/32725408-09-tensorflow.zip 3MB 06 - Natural Language Processing + Regularization/31762302-06-0-reguralisation.zip 3MB 15 - Model Deployment/001 Intro.mp4 3MB 10 - Deep Learning PyTorch Introduction/001 Introduction.mp4 2MB 03 - Machine Learning Numpy + Scikit Learn/001 Your reviews are important to me!.mp4 2MB 14 - Bayesian Learning and probabilistic programming/31919076-bayesian-inference.zip 2MB 07 - Deep Learning/001 Intro.mp4 633KB 02 - Basic python + Pandas + Plotting/34142844-04-pairplots.ipynb 200KB 03 - Machine Learning Numpy + Scikit Learn/012 CART part 2_en.vtt 21KB 03 - Machine Learning Numpy + Scikit Learn/005 Kmeans part 2_en.vtt 20KB 13 - Deep Learning Transformers and BERT/008 Pytorch Lightning + DistilBERT for classification_en.vtt 17KB 03 - Machine Learning Numpy + Scikit Learn/003 Gradient Descent_en.vtt 17KB 07 - Deep Learning/004 Tensorflow + Keras demo problem 1_en.vtt 16KB 12 - Pixel Level Segmentation (Semantic Segmentation) with PyTorch/009 Semantic Segmentation training with PyTorch Lightning_en.vtt 16KB 04 - Machine Learning Classification + Time Series + Model Diagnostics/005 Titanic dataset_en.vtt 15KB 04 - Machine Learning Classification + Time Series + Model Diagnostics/007 Sklearn classification_en.vtt 14KB 09 - Deep Learning Recurrent Neural Nets/003 Word2Vec keras Model API_en.vtt 13KB 09 - Deep Learning Recurrent Neural Nets/010 Sequence to Sequence models Prediction step_en.vtt 13KB 08 - Deep Learning (TensorFlow) - Convolutional Neural Nets/008 Nose Tip detection with CNNs_en.vtt 12KB 03 - Machine Learning Numpy + Scikit Learn/009 Linear Regresson Part 1_en.vtt 12KB 03 - Machine Learning Numpy + Scikit Learn/004 Kmeans part 1_en.vtt 12KB 09 - Deep Learning Recurrent Neural Nets/005 Deep Learning - Long Short Term Memory (LSTM) Nets_en.vtt 12KB 09 - Deep Learning Recurrent Neural Nets/007 Transfer Learning - GLOVE vectors_en.vtt 11KB 02 - Basic python + Pandas + Plotting/011 Pandas simple functions_en.vtt 11KB 03 - Machine Learning Numpy + Scikit Learn/010 Linear Regression Part 2_en.vtt 11KB 13 - Deep Learning Transformers and BERT/006 Tokenizers and data prep for BERT models_en.vtt 11KB 13 - Deep Learning Transformers and BERT/007 Distilbert (Smaller BERT) model_en.vtt 11KB 02 - Basic python + Pandas + Plotting/005 Numpy functions_en.vtt 11KB 09 - Deep Learning Recurrent Neural Nets/004 Recurrent Neural Nets - Theory_en.vtt 11KB 09 - Deep Learning Recurrent Neural Nets/002 Kaggle + Word2Vec_en.vtt 11KB 05 - Unsupervised Learning/002 Fashion MNIST PCA_en.vtt 10KB 14 - Bayesian Learning and probabilistic programming/002 Bayesian Learning Distributions_en.vtt 10KB 07 - Deep Learning/007 MNIST and Softmax_en.vtt 10KB 08 - Deep Learning (TensorFlow) - Convolutional Neural Nets/007 Cifar-10_en.vtt 10KB 06 - Natural Language Processing + Regularization/004 Financial News Sentiment Classifier_en.vtt 10KB 14 - Bayesian Learning and probabilistic programming/007 Bayesian Linear Regression with pymc3_en.vtt 10KB 04 - Machine Learning Classification + Time Series + Model Diagnostics/018 Stratified K Fold_en.vtt 10KB 06 - Natural Language Processing + Regularization/009 Feature Extraction with Spacy (using Pandas)_en.vtt 10KB 04 - Machine Learning Classification + Time Series + Model Diagnostics/012 FB Prophet part 1_en.vtt 10KB 03 - Machine Learning Numpy + Scikit Learn/015 Gradient Boosted Machines_en.vtt 10KB 03 - Machine Learning Numpy + Scikit Learn/006 Broadcasting_en.vtt 10KB 10 - Deep Learning PyTorch Introduction/010 Deep Learning Intro to Pytorch Lightning_en.vtt 9KB 14 - Bayesian Learning and probabilistic programming/009 Bayesian Rolling regression - pymc3 way_en.vtt 9KB 04 - Machine Learning Classification + Time Series + Model Diagnostics/019 Area Under Curve (AUC) Part 1_en.vtt 9KB 12 - Pixel Level Segmentation (Semantic Segmentation) with PyTorch/007 PyTorch Weighted CrossEntropy Loss_en.vtt 9KB 05 - Unsupervised Learning/001 Principal Component Analysis (PCA) theory_en.vtt 9KB 14 - Bayesian Learning and probabilistic programming/003 Bayes rule for population mean estimation_en.vtt 9KB 13 - Deep Learning Transformers and BERT/002 The illustrated Transformer (blogpost by Jay Alammar)_en.vtt 9KB 14 - Bayesian Learning and probabilistic programming/004 Bayesian learning Population estimation pymc3 way_en.vtt 9KB 12 - Pixel Level Segmentation (Semantic Segmentation) with PyTorch/006 PyTorch Hooks Step through with breakpoints_en.vtt 9KB 09 - Deep Learning Recurrent Neural Nets/009 Sequence to Sequence model + Keras Model API_en.vtt 9KB 10 - Deep Learning PyTorch Introduction/005 Deep Learning with Pytorch Loss functions_en.vtt 9KB 08 - Deep Learning (TensorFlow) - Convolutional Neural Nets/003 Keras Conv2D layer_en.vtt 9KB 14 - Bayesian Learning and probabilistic programming/001 Introduction and Terminology_en.vtt 8KB 09 - Deep Learning Recurrent Neural Nets/001 Word2vec and Embeddings_en.vtt 8KB 07 - Deep Learning/011 Batch Norm Theory_en.vtt 8KB 04 - Machine Learning Classification + Time Series + Model Diagnostics/017 Cross Validation_en.vtt 8KB 02 - Basic python + Pandas + Plotting/015 Pandas map and apply_en.vtt 8KB 10 - Deep Learning PyTorch Introduction/006 Deep Learning with Pytorch Stochastic Gradient Descent_en.vtt 8KB 14 - Bayesian Learning and probabilistic programming/005 Coin Toss Example with Pymc3_en.vtt 8KB 09 - Deep Learning Recurrent Neural Nets/008 Sequence to Sequence Introduction + Data Prep_en.vtt 8KB 02 - Basic python + Pandas + Plotting/024 Seaborn + pair plots_en.vtt 8KB 06 - Natural Language Processing + Regularization/016 Ridge regression (L2 penalised regression)_en.vtt 8KB 05 - Unsupervised Learning/006 Gaussian Mixture Models (GMM) theory_en.vtt 8KB 02 - Basic python + Pandas + Plotting/021 Histograms_en.vtt 8KB 06 - Natural Language Processing + Regularization/005 NLTK + Stemming_en.vtt 8KB 02 - Basic python + Pandas + Plotting/013 Pandas loc and iloc_en.vtt 8KB 05 - Unsupervised Learning/003 K-means_en.vtt 8KB 15 - Model Deployment/004 FastAPI serving model_en.vtt 8KB 14 - Bayesian Learning and probabilistic programming/012 Variational Bayes Linear Classification_en.vtt 8KB 15 - Model Deployment/007 CLIP model_en.vtt 7KB 12 - Pixel Level Segmentation (Semantic Segmentation) with PyTorch/005 PyTorch Hooks_en.vtt 7KB 05 - Unsupervised Learning/004 Other clustering methods_en.vtt 7KB 04 - Machine Learning Classification + Time Series + Model Diagnostics/011 Loss functions_en.vtt 7KB 06 - Natural Language Processing + Regularization/017 S&P500 data preparation for L1 loss_en.vtt 7KB 02 - Basic python + Pandas + Plotting/016 Pandas groupby_en.vtt 7KB 08 - Deep Learning (TensorFlow) - Convolutional Neural Nets/005 Dropout theory and code_en.vtt 7KB 04 - Machine Learning Classification + Time Series + Model Diagnostics/016 Overfitting_en.vtt 7KB 04 - Machine Learning Classification + Time Series + Model Diagnostics/020 Area Under Curve (AUC) Part 2_en.vtt 7KB 05 - Unsupervised Learning/005 DBSCAN theory_en.vtt 7KB 04 - Machine Learning Classification + Time Series + Model Diagnostics/003 Theory part 1_en.vtt 7KB 03 - Machine Learning Numpy + Scikit Learn/014 Random Forest Code_en.vtt 7KB 03 - Machine Learning Numpy + Scikit Learn/011 Classification and Regression Trees_en.vtt 6KB 02 - Basic python + Pandas + Plotting/002 Basic Data Structures_en.vtt 6KB 02 - Basic python + Pandas + Plotting/022 Scatter Plots_en.vtt 6KB 12 - Pixel Level Segmentation (Semantic Segmentation) with PyTorch/003 Unet Architecture overview_en.vtt 6KB 11 - Deep Learning Transfer Learning with PyTorch Lightning/006 PyTorch Lightning Trainer + Model evaluation_en.vtt 6KB 04 - Machine Learning Classification + Time Series + Model Diagnostics/004 Theory part 2 + code_en.vtt 6KB 02 - Basic python + Pandas + Plotting/012 Pandas Subsetting_en.vtt 6KB 01 - Introduction/002 How to tackle this course_en.vtt 6KB 07 - Deep Learning/002 DL theory part 1_en.vtt 6KB 06 - Natural Language Processing + Regularization/014 MSE recap_en.vtt 6KB 15 - Model Deployment/006 Streamlit functions_en.vtt 6KB 02 - Basic python + Pandas + Plotting/023 Subplots_en.vtt 6KB 12 - Pixel Level Segmentation (Semantic Segmentation) with PyTorch/002 Coco Dataset + Augmentations for Segmentation with Torchvision_en.vtt 6KB 04 - Machine Learning Classification + Time Series + Model Diagnostics/010 Intro_en.vtt 6KB 11 - Deep Learning Transfer Learning with PyTorch Lightning/009 Data Augmentation with Torchvision Transforms_en.vtt 6KB 04 - Machine Learning Classification + Time Series + Model Diagnostics/014 Theory behind FB Prophet_en.vtt 6KB 06 - Natural Language Processing + Regularization/011 Over-sampling_en.vtt 6KB 04 - Machine Learning Classification + Time Series + Model Diagnostics/008 Dealing with missing values_en.vtt 6KB 10 - Deep Learning PyTorch Introduction/003 Pytorch Dataset and DataLoaders_en.vtt 6KB 10 - Deep Learning PyTorch Introduction/004 Deep Learning with PyTorch nn.Sequential models_en.vtt 6KB 07 - Deep Learning/010 Batch Norm_en.vtt 6KB 06 - Natural Language Processing + Regularization/018 L1 Penalised Regression (Lasso)_en.vtt 6KB 14 - Bayesian Learning and probabilistic programming/008 Bayesian Rolling Regression - Problem setup_en.vtt 6KB 13 - Deep Learning Transformers and BERT/003 Encoder Transformer Models The Maths_en.vtt 6KB 06 - Natural Language Processing + Regularization/008 Spacy intro_en.vtt 6KB 02 - Basic python + Pandas + Plotting/004 Python functions (methods)_en.vtt 6KB 07 - Deep Learning/009 Softmax theory_en.vtt 6KB 07 - Deep Learning/005 Activation functions_en.vtt 6KB 10 - Deep Learning PyTorch Introduction/008 Pytorch Model API_en.vtt 6KB 07 - Deep Learning/006 First example with Relu_en.vtt 5KB 11 - Deep Learning Transfer Learning with PyTorch Lightning/015 WandB for logging experiments_en.vtt 5KB 08 - Deep Learning (TensorFlow) - Convolutional Neural Nets/006 MaxPool (and comparison to stride)_en.vtt 5KB 06 - Natural Language Processing + Regularization/001 Intro_en.vtt 5KB 14 - Bayesian Learning and probabilistic programming/010 Bayesian Rolling Regression - forecasting_en.vtt 5KB 15 - Model Deployment/003 FastAPI intro_en.vtt 5KB 04 - Machine Learning Classification + Time Series + Model Diagnostics/006 Sklearn classification prelude_en.vtt 5KB 02 - Basic python + Pandas + Plotting/014 Pandas loc and iloc 2_en.vtt 5KB 10 - Deep Learning PyTorch Introduction/002 Pytorch TensorDataset_en.vtt 5KB 03 - Machine Learning Numpy + Scikit Learn/008 Intro_en.vtt 5KB 01 - Introduction/004 Jupyter Notebooks_en.vtt 5KB 06 - Natural Language Processing + Regularization/002 Stop words and Term Frequency_en.vtt 5KB 11 - Deep Learning Transfer Learning with PyTorch Lightning/008 Cassava Leaf Dataset_en.vtt 5KB 01 - Introduction/003 Installations and sign ups_en.vtt 5KB 14 - Bayesian Learning and probabilistic programming/006 Data Setup for Bayesian Linear Regression_en.vtt 5KB 11 - Deep Learning Transfer Learning with PyTorch Lightning/004 PyTorch transfer learning with ResNet_en.vtt 4KB 06 - Natural Language Processing + Regularization/010 Classification Example_en.vtt 4KB 11 - Deep Learning Transfer Learning with PyTorch Lightning/003 PyTorch datasets + Torchvision_en.vtt 4KB 02 - Basic python + Pandas + Plotting/007 For loops_en.vtt 4KB 04 - Machine Learning Classification + Time Series + Model Diagnostics/013 FB Prophet part 2_en.vtt 4KB 14 - Bayesian Learning and probabilistic programming/016 Deep Bayesian Networks - analysis_en.vtt 4KB 06 - Natural Language Processing + Regularization/006 N-grams_en.vtt 4KB 11 - Deep Learning Transfer Learning with PyTorch Lightning/013 Cross Entropy Loss for Imbalanced Classes_en.vtt 4KB 11 - Deep Learning Transfer Learning with PyTorch Lightning/005 PyTorch Lightning Model_en.vtt 4KB 07 - Deep Learning/003 DL theory part 2_en.vtt 4KB 02 - Basic python + Pandas + Plotting/006 Conditional statements_en.vtt 4KB 02 - Basic python + Pandas + Plotting/020 Plot multiple lines_en.vtt 4KB 14 - Bayesian Learning and probabilistic programming/014 Minibatch Variational Bayes_en.vtt 4KB 02 - Basic python + Pandas + Plotting/003 Dictionaries_en.vtt 4KB 06 - Natural Language Processing + Regularization/019 L1 L2 Penalty theory why it works_en.vtt 4KB 16 - Final Thoughts/001 Some advice on your journey_en.vtt 4KB 13 - Deep Learning Transformers and BERT/004 BERT - The theory_en.vtt 4KB 06 - Natural Language Processing + Regularization/007 Word (feature) importance_en.vtt 4KB 14 - Bayesian Learning and probabilistic programming/013 Variational Bayesian Inference Result Analysis_en.vtt 4KB 12 - Pixel Level Segmentation (Semantic Segmentation) with PyTorch/004 PyTorch Model Architecture_en.vtt 4KB 06 - Natural Language Processing + Regularization/015 L2 Loss Ridge Regression intro_en.vtt 4KB 11 - Deep Learning Transfer Learning with PyTorch Lightning/012 Setting up PyTorch Lightning for training_en.vtt 4KB 08 - Deep Learning (TensorFlow) - Convolutional Neural Nets/002 Fashion MNIST feed forward net for benchmarking_en.vtt 3KB 10 - Deep Learning PyTorch Introduction/007 Deep Learning with Pytorch Optimizers_en.vtt 3KB 11 - Deep Learning Transfer Learning with PyTorch Lightning/010 Train vs Test Augmentations + DataLoader parameters_en.vtt 3KB 11 - Deep Learning Transfer Learning with PyTorch Lightning/011 Deep Learning Transfer Learning Model with ResNet_en.vtt 3KB 04 - Machine Learning Classification + Time Series + Model Diagnostics/002 Kaggle part 2_en.vtt 3KB 02 - Basic python + Pandas + Plotting/019 Line plot_en.vtt 3KB 14 - Bayesian Learning and probabilistic programming/011 Variational Bayes Intro_en.vtt 3KB 08 - Deep Learning (TensorFlow) - Convolutional Neural Nets/001 Intro_en.vtt 3KB 14 - Bayesian Learning and probabilistic programming/015 Deep Bayesian Networks_en.vtt 3KB 07 - Deep Learning/008 Deep Learning Input Normalisation_en.vtt 3KB 15 - Model Deployment/002 Saving Models_en.vtt 3KB 02 - Basic python + Pandas + Plotting/008 Dictionaries again_en.vtt 3KB 06 - Natural Language Processing + Regularization/003 Term Frequency - Inverse Document Frequency (Tf - Idf) theory_en.vtt 3KB 08 - Deep Learning (TensorFlow) - Convolutional Neural Nets/004 Model fitting and discussion of results_en.vtt 3KB 11 - Deep Learning Transfer Learning with PyTorch Lightning/014 PyTorch Test dataset setup and evaluation_en.vtt 3KB 11 - Deep Learning Transfer Learning with PyTorch Lightning/002 Kaggle problem description_en.vtt 3KB 04 - Machine Learning Classification + Time Series + Model Diagnostics/001 Kaggle part 1_en.vtt 3KB 06 - Natural Language Processing + Regularization/013 Introduction_en.vtt 3KB 10 - Deep Learning PyTorch Introduction/009 Pytorch in GPUs_en.vtt 3KB 12 - Pixel Level Segmentation (Semantic Segmentation) with PyTorch/001 Introduction_en.vtt 3KB 15 - Model Deployment/005 Streamlit Intro_en.vtt 3KB 03 - Machine Learning Numpy + Scikit Learn/013 Random Forest theory_en.vtt 3KB 02 - Basic python + Pandas + Plotting/010 Intro_en.vtt 2KB 01 - Introduction/001 Introduction_en.vtt 2KB 09 - Deep Learning Recurrent Neural Nets/006 Deep Learning - Stacking LSTMs + GRUs_en.vtt 2KB 11 - Deep Learning Transfer Learning with PyTorch Lightning/001 Transfer Learning Introduction_en.vtt 2KB 13 - Deep Learning Transformers and BERT/005 Kaggle Multi-lingual Toxic Comment Classification Challenge_en.vtt 2KB 12 - Pixel Level Segmentation (Semantic Segmentation) with PyTorch/008 Weights and Biases Logging images_en.vtt 2KB 13 - Deep Learning Transformers and BERT/001 Introduction to Transformers_en.vtt 2KB 10 - Deep Learning PyTorch Introduction/001 Introduction_en.vtt 1KB 15 - Model Deployment/001 Intro_en.vtt 1KB 11 - Deep Learning Transfer Learning with PyTorch Lightning/007 Deep Learning for Cassava Leaf Classification_en.vtt 1KB 02 - Basic python + Pandas + Plotting/001 Intro_en.vtt 865B 07 - Deep Learning/001 Intro_en.vtt 473B 02 - Basic python + Pandas + Plotting/31283222-multi-plot.py 440B 13 - Deep Learning Transformers and BERT/external-assets-links.txt 264B 04 - Machine Learning Classification + Time Series + Model Diagnostics/009 --------- Time Series -------------------.html 255B 06 - Natural Language Processing + Regularization/012 -------- Regularization ------------.html 218B 01 - Introduction/005 Course Material.html 130B 03 - Machine Learning Numpy + Scikit Learn/002 ----------- Numpy -------------.html 129B 0. Websites you may like/[CourseClub.ME].url 122B 03 - Machine Learning Numpy + Scikit Learn/[CourseClub.Me].url 122B 07 - Deep Learning/[CourseClub.Me].url 122B 10 - Deep Learning PyTorch Introduction/external-assets-links.txt 122B 11 - Deep Learning Transfer Learning with PyTorch Lightning/[CourseClub.Me].url 122B 15 - Model Deployment/[CourseClub.Me].url 122B [CourseClub.Me].url 122B 04 - Machine Learning Classification + Time Series + Model Diagnostics/015 ------------ Model Diagnostics -----.html 112B 02 - Basic python + Pandas + Plotting/018 Plotting resources (notebooks).html 92B 03 - Machine Learning Numpy + Scikit Learn/007 ---------------- Scikit Learn -------------------------------------.html 72B 02 - Basic python + Pandas + Plotting/009 -------------------------------- Pandas --------------------------------.html 61B 12 - Pixel Level Segmentation (Semantic Segmentation) with PyTorch/external-assets-links.txt 52B 0. Websites you may like/[GigaCourse.Com].url 49B 03 - Machine Learning Numpy + Scikit Learn/[GigaCourse.Com].url 49B 07 - Deep Learning/[GigaCourse.Com].url 49B 11 - Deep Learning Transfer Learning with PyTorch Lightning/[GigaCourse.Com].url 49B 15 - Model Deployment/[GigaCourse.Com].url 49B [GigaCourse.Com].url 49B 02 - Basic python + Pandas + Plotting/017 ----- Plotting --------.html 47B