[ ] Udemy - Data pre-processing for Machine Learning in Python
- 收录时间:2022-04-17 05:01:16
- 文件大小:2GB
- 下载次数:1
- 最近下载:2022-04-17 05:01:16
- 磁力链接:
-
文件列表
- ~Get Your Files Here !/9. A complete pipeline/1. An example of a complete pipeline.mp4 121MB
- ~Get Your Files Here !/3. Encoding of the categorical features/2. One-hot encoding.mp4 115MB
- ~Get Your Files Here !/2. Data cleaning/6. ColumnTransformer and make_column_selector.mp4 88MB
- ~Get Your Files Here !/8. Filter-based feature selection/6. Feature importance according to a model.mp4 87MB
- ~Get Your Files Here !/2. Data cleaning/7. Exercises.mp4 81MB
- ~Get Your Files Here !/5. Pipelines/3. Exercises.mp4 79MB
- ~Get Your Files Here !/5. Pipelines/2. Pipelines and ColumnTransformer together.mp4 79MB
- ~Get Your Files Here !/8. Filter-based feature selection/2. Numerical features, numerical target.mp4 78MB
- ~Get Your Files Here !/4. Transformations of the numerical features/6. Exercise.mp4 77MB
- ~Get Your Files Here !/3. Encoding of the categorical features/5. Exercise.mp4 74MB
- ~Get Your Files Here !/6. Scaling/2. Normalization, Standardization, Robust scaling.mp4 71MB
- ~Get Your Files Here !/8. Filter-based feature selection/4. Categorical features, numerical target.mp4 71MB
- ~Get Your Files Here !/7. Principal Component Analysis/2. How to perform PCA.mp4 62MB
- ~Get Your Files Here !/2. Data cleaning/5. KNN blank filling.mp4 61MB
- ~Get Your Files Here !/4. Transformations of the numerical features/3. Binning.mp4 60MB
- ~Get Your Files Here !/2. Data cleaning/3. Cleaning the numerical features.mp4 59MB
- ~Get Your Files Here !/10. Oversampling/2. How to perform SMOTE.mp4 57MB
- ~Get Your Files Here !/8. Filter-based feature selection/5. Categorical features, categorical target.mp4 57MB
- ~Get Your Files Here !/8. Filter-based feature selection/9. Exercises.mp4 54MB
- ~Get Your Files Here !/8. Filter-based feature selection/3. Numerical features, categorical target.mp4 52MB
- ~Get Your Files Here !/6. Scaling/3. Exercise.mp4 51MB
- ~Get Your Files Here !/4. Transformations of the numerical features/2. Power Transformation.mp4 49MB
- ~Get Your Files Here !/4. Transformations of the numerical features/5. Applying an arbitrary transformation.mp4 42MB
- ~Get Your Files Here !/3. Encoding of the categorical features/3. Ordinal encoding.mp4 40MB
- ~Get Your Files Here !/5. Pipelines/1. Define a transformation pipeline.mp4 39MB
- ~Get Your Files Here !/10. Oversampling/3. Exercise.mp4 35MB
- ~Get Your Files Here !/1. Introduction/5. Jupyter notebooks.mp4 35MB
- ~Get Your Files Here !/7. Principal Component Analysis/3. Exercise.mp4 33MB
- ~Get Your Files Here !/8. Filter-based feature selection/1. Introduction to feature selection.mp4 29MB
- ~Get Your Files Here !/2. Data cleaning/2. Selecting numerical and categorical variables.mp4 28MB
- ~Get Your Files Here !/10. Oversampling/1. Introduction to SMOTE.mp4 20MB
- ~Get Your Files Here !/6. Scaling/1. Introduction to scaling.mp4 19MB
- ~Get Your Files Here !/7. Principal Component Analysis/1. Introduction to PCA.mp4 19MB
- ~Get Your Files Here !/1. Introduction/1. Introduction to the course.mp4 18MB
- ~Get Your Files Here !/2. Data cleaning/4. Cleaning the categorical features.mp4 17MB
- ~Get Your Files Here !/4. Transformations of the numerical features/4. Binarizing.mp4 12MB
- ~Get Your Files Here !/1. Introduction/2. Numerical and categorical variables.mp4 12MB
- ~Get Your Files Here !/4. Transformations of the numerical features/1. Introduction to transformations.mp4 11MB
- ~Get Your Files Here !/3. Encoding of the categorical features/4. Label encoding of the target variable.mp4 10MB
- ~Get Your Files Here !/2. Data cleaning/1. Introduction to data cleaning.mp4 10MB
- ~Get Your Files Here !/3. Encoding of the categorical features/1. Introduction to the encoding of categorical variables.mp4 5MB
- ~Get Your Files Here !/1. Introduction/3.2 sample_dataset.csv 97KB
- ~Get Your Files Here !/8. Filter-based feature selection/4.1 Categorical features numerical target.ipynb 44KB
- ~Get Your Files Here !/4. Transformations of the numerical features/2.1 Power Transform.ipynb 43KB
- ~Get Your Files Here !/8. Filter-based feature selection/5.1 Categorical features categorical target.ipynb 43KB
- ~Get Your Files Here !/8. Filter-based feature selection/2.1 Numerical target numerical feature.ipynb 41KB
- ~Get Your Files Here !/2. Data cleaning/4.1 Cleaning the categorical features.ipynb 34KB
- ~Get Your Files Here !/4. Transformations of the numerical features/3.1 Binning.ipynb 30KB
- ~Get Your Files Here !/8. Filter-based feature selection/6.1 Feature importance according to model.ipynb 26KB
- ~Get Your Files Here !/7. Principal Component Analysis/2.1 PCA.ipynb 25KB
- ~Get Your Files Here !/2. Data cleaning/7.1 Exercises.ipynb 24KB
- ~Get Your Files Here !/3. Encoding of the categorical features/2. One-hot encoding.srt 20KB
- ~Get Your Files Here !/9. A complete pipeline/1. An example of a complete pipeline.srt 18KB
- ~Get Your Files Here !/6. Scaling/2.1 Scaling techniques.ipynb 14KB
- ~Get Your Files Here !/4. Transformations of the numerical features/4.1 Binarizer.ipynb 13KB
- ~Get Your Files Here !/2. Data cleaning/6. ColumnTransformer and make_column_selector.srt 13KB
- ~Get Your Files Here !/8. Filter-based feature selection/3.1 Numerical features categorical target.ipynb 13KB
- ~Get Your Files Here !/3. Encoding of the categorical features/5. Exercise.srt 12KB
- ~Get Your Files Here !/4. Transformations of the numerical features/5.1 FunctionTransformer.ipynb 12KB
- ~Get Your Files Here !/6. Scaling/2. Normalization, Standardization, Robust scaling.srt 12KB
- ~Get Your Files Here !/7. Principal Component Analysis/3.1 Exercises.ipynb 11KB
- ~Get Your Files Here !/5. Pipelines/2. Pipelines and ColumnTransformer together.srt 11KB
- ~Get Your Files Here !/9. A complete pipeline/1.1 A complete pipeline.ipynb 11KB
- ~Get Your Files Here !/4. Transformations of the numerical features/3. Binning.srt 11KB
- ~Get Your Files Here !/3. Encoding of the categorical features/2.1 One-hot encoding.ipynb 11KB
- ~Get Your Files Here !/8. Filter-based feature selection/6. Feature importance according to a model.srt 11KB
- ~Get Your Files Here !/5. Pipelines/3. Exercises.srt 11KB
- ~Get Your Files Here !/2. Data cleaning/5. KNN blank filling.srt 11KB
- ~Get Your Files Here !/2. Data cleaning/3. Cleaning the numerical features.srt 11KB
- ~Get Your Files Here !/10. Oversampling/2. How to perform SMOTE.srt 10KB
- ~Get Your Files Here !/4. Transformations of the numerical features/6. Exercise.srt 10KB
- ~Get Your Files Here !/8. Filter-based feature selection/2. Numerical features, numerical target.srt 9KB
- ~Get Your Files Here !/2. Data cleaning/7. Exercises.srt 9KB
- ~Get Your Files Here !/1. Introduction/5. Jupyter notebooks.srt 9KB
- ~Get Your Files Here !/5. Pipelines/1. Define a transformation pipeline.srt 9KB
- ~Get Your Files Here !/8. Filter-based feature selection/4. Categorical features, numerical target.srt 9KB
- ~Get Your Files Here !/4. Transformations of the numerical features/6.1 Exercises.ipynb 9KB
- ~Get Your Files Here !/10. Oversampling/2.1 How to do SMOTE.ipynb 9KB
- ~Get Your Files Here !/4. Transformations of the numerical features/2. Power Transformation.srt 9KB
- ~Get Your Files Here !/7. Principal Component Analysis/2. How to perform PCA.srt 9KB
- ~Get Your Files Here !/1. Introduction/3.1 sample_dataset_bins.csv 8KB
- ~Get Your Files Here !/8. Filter-based feature selection/9. Exercises.srt 8KB
- ~Get Your Files Here !/3. Encoding of the categorical features/3. Ordinal encoding.srt 8KB
- ~Get Your Files Here !/2. Data cleaning/3.1 Cleaning the numerical features.ipynb 8KB
- ~Get Your Files Here !/4. Transformations of the numerical features/5. Applying an arbitrary transformation.srt 7KB
- ~Get Your Files Here !/8. Filter-based feature selection/1. Introduction to feature selection.srt 7KB
- ~Get Your Files Here !/2. Data cleaning/6.1 ColumnTransformer.ipynb 7KB
- ~Get Your Files Here !/8. Filter-based feature selection/5. Categorical features, categorical target.srt 7KB
- ~Get Your Files Here !/2. Data cleaning/5.1 Cleaning with KNN.ipynb 7KB
- ~Get Your Files Here !/6. Scaling/3. Exercise.srt 7KB
- ~Get Your Files Here !/5. Pipelines/3.1 Exercises.ipynb 6KB
- ~Get Your Files Here !/7. Principal Component Analysis/3. Exercise.srt 6KB
- ~Get Your Files Here !/8. Filter-based feature selection/3. Numerical features, categorical target.srt 6KB
- ~Get Your Files Here !/10. Oversampling/3. Exercise.srt 6KB
- ~Get Your Files Here !/5. Pipelines/2.1 Pipelines and ColumnTransformer together .ipynb 6KB
- ~Get Your Files Here !/10. Oversampling/1. Introduction to SMOTE.srt 5KB
- ~Get Your Files Here !/3. Encoding of the categorical features/5.1 Exercises.ipynb 5KB
- ~Get Your Files Here !/10. Oversampling/3.1 Exercises.ipynb 5KB
- ~Get Your Files Here !/8. Filter-based feature selection/9.1 Exercises.ipynb 5KB
- ~Get Your Files Here !/2. Data cleaning/2.1 Select numerical and categorical variables.ipynb 5KB
- ~Get Your Files Here !/6. Scaling/3.1 Exercise.ipynb 4KB
- ~Get Your Files Here !/5. Pipelines/1.1 Define a transformation pipeline.ipynb 4KB
- ~Get Your Files Here !/2. Data cleaning/2. Selecting numerical and categorical variables.srt 4KB
- ~Get Your Files Here !/7. Principal Component Analysis/1. Introduction to PCA.srt 4KB
- ~Get Your Files Here !/2. Data cleaning/4. Cleaning the categorical features.srt 4KB
- ~Get Your Files Here !/3. Encoding of the categorical features/3.1 OrdinalEncoder.ipynb 4KB
- ~Get Your Files Here !/1. Introduction/1. Introduction to the course.srt 3KB
- ~Get Your Files Here !/6. Scaling/1. Introduction to scaling.srt 3KB
- ~Get Your Files Here !/4. Transformations of the numerical features/1. Introduction to transformations.srt 3KB
- ~Get Your Files Here !/3. Encoding of the categorical features/4. Label encoding of the target variable.srt 2KB
- ~Get Your Files Here !/4. Transformations of the numerical features/4. Binarizing.srt 2KB
- ~Get Your Files Here !/2. Data cleaning/1. Introduction to data cleaning.srt 2KB
- ~Get Your Files Here !/1. Introduction/2. Numerical and categorical variables.srt 2KB
- ~Get Your Files Here !/3. Encoding of the categorical features/4.1 LabelEncoder.ipynb 2KB
- ~Get Your Files Here !/11. General guidelines/1. Practical suggestions.html 1KB
- ~Get Your Files Here !/3. Encoding of the categorical features/1. Introduction to the encoding of categorical variables.srt 1KB
- ~Get Your Files Here !/8. Filter-based feature selection/7. A comment on mutual information.html 1KB
- ~Get Your Files Here !/4. Transformations of the numerical features/7. About power transformations.html 1KB
- ~Get Your Files Here !/8. Filter-based feature selection/8. A comment on feature selection with categorical variables.html 1013B
- ~Get Your Files Here !/1. Introduction/4. Required Python packages.html 919B
- ~Get Your Files Here !/Bonus Resources.txt 386B
- ~Get Your Files Here !/1. Introduction/3. The dataset.html 361B
- Get Bonus Downloads Here.url 182B