Udemy - Signal processing problems, solved in MATLAB and in Python
- 收录时间:2020-01-06 18:18:50
- 文件大小:6GB
- 下载次数:81
- 最近下载:2021-01-23 09:24:18
- 磁力链接:
-
文件列表
- 3. Spectral and rhythmicity analyses/3. Fourier transform for spectral analyses.mp4 174MB
- 10. Feature detection/6. Application Detect muscle movements from EMG recordings.mp4 151MB
- 7. Wavelet analysis/8. MATLAB Time-frequency analysis with complex wavelets.mp4 140MB
- 7. Wavelet analysis/5. Wavelet convolution for narrowband filtering.mp4 136MB
- 10. Feature detection/4. Wavelet convolution for feature extraction.mp4 136MB
- 11. Variability/3. Signal-to-noise ratio (SNR).mp4 133MB
- 10. Feature detection/7. Full width at half-maximum.mp4 131MB
- 10. Feature detection/2. Local maxima and minima.mp4 127MB
- 8. Resampling, interpolating, extrapolating/9. Dynamic time warping.mp4 123MB
- 3. Spectral and rhythmicity analyses/4. Welch's method and windowing.mp4 122MB
- 5. Filtering/3. FIR filters with firls.mp4 120MB
- 3. Spectral and rhythmicity analyses/2. Crash course on the Fourier transform.mp4 117MB
- 5. Filtering/2. Filtering Intuition, goals, and types.mp4 115MB
- 11. Variability/5. Entropy.mp4 112MB
- 8. Resampling, interpolating, extrapolating/3. Downsampling.mp4 111MB
- 2. Time series denoising/8. Remove nonlinear trend with polynomials.mp4 109MB
- 10. Feature detection/3. Recover signal from noise amplitude.mp4 104MB
- 8. Resampling, interpolating, extrapolating/2. Upsampling.mp4 101MB
- 6. Convolution/3. Convolution in MATLAB.mp4 101MB
- 5. Filtering/7. Avoid edge effects with reflection.mp4 99MB
- 2. Time series denoising/3. Gaussian-smooth a time series.mp4 96MB
- 8. Resampling, interpolating, extrapolating/6. Resample irregularly sampled data.mp4 94MB
- 7. Wavelet analysis/2. What are wavelets.mp4 93MB
- 10. Feature detection/5. Area under the curve.mp4 91MB
- 5. Filtering/15. Remove electrical line noise and its harmonics.mp4 91MB
- 5. Filtering/10. Windowed-sinc filters.mp4 88MB
- 6. Convolution/6. Thinking about convolution as spectral multiplication.mp4 88MB
- 5. Filtering/14. Quantifying roll-off characteristics.mp4 87MB
- 2. Time series denoising/10. Remove artifact via least-squares template-matching.mp4 85MB
- 5. Filtering/6. Causal and zero-phase-shift filters.mp4 82MB
- 5. Filtering/5. IIR Butterworth filters.mp4 80MB
- 9. Outlier detection/3. Outliers via local threshold exceedance.mp4 77MB
- 8. Resampling, interpolating, extrapolating/8. Spectral interpolation.mp4 77MB
- 2. Time series denoising/6. Median filter to remove spike noise.mp4 77MB
- 3. Spectral and rhythmicity analyses/5. Spectrogram of birdsong.mp4 76MB
- 11. Variability/2. Total and windowed variance and RMS.mp4 76MB
- 5. Filtering/16. Use filtering to separate birds in a recording.mp4 75MB
- 6. Convolution/2. Time-domain convolution.mp4 71MB
- 9. Outlier detection/2. Outliers via standard deviation threshold.mp4 70MB
- 6. Convolution/5. The convolution theorem.mp4 69MB
- 2. Time series denoising/2. Mean-smooth a time series.mp4 66MB
- 5. Filtering/8. Data length and filter kernel length.mp4 65MB
- 5. Filtering/9. Low-pass filters.mp4 64MB
- 7. Wavelet analysis/9. Time-frequency analysis of brain signals.mp4 63MB
- 2. Time series denoising/5. Denoising EMG signals via TKEO.mp4 57MB
- 5. Filtering/12. Narrow-band filters.mp4 56MB
- 4. Working with complex numbers/2. From the number line to the complex number plane.mp4 55MB
- 8. Resampling, interpolating, extrapolating/5. Interpolation.mp4 55MB
- 1. Introductions/5. Writing code vs. using toolboxesprograms.mp4 53MB
- 5. Filtering/11. High-pass filters.mp4 52MB
- 6. Convolution/8. Convolution with frequency-domain Gaussian (narrowband filter).mp4 52MB
- 2. Time series denoising/9. Averaging multiple repetitions (time-synchronous averaging).mp4 50MB
- 6. Convolution/7. Convolution with time-domain Gaussian (smoothing filter).mp4 49MB
- 7. Wavelet analysis/6. Overview Time-frequency analysis with complex wavelets.mp4 49MB
- 4. Working with complex numbers/7. Magnitude and phase of complex numbers.mp4 48MB
- 7. Wavelet analysis/3. Convolution with wavelets.mp4 48MB
- 5. Filtering/4. FIR filters with fir1.mp4 47MB
- 9. Outlier detection/4. Outlier time windows via sliding RMS.mp4 46MB
- 6. Convolution/9. Convolution with frequency-domain Planck taper (bandpass filter).mp4 46MB
- 8. Resampling, interpolating, extrapolating/4. Strategies for multirate signals.mp4 44MB
- 5. Filtering/13. Two-stage wide-band filter.mp4 42MB
- 2. Time series denoising/4. Gaussian-smooth a spike time series.mp4 42MB
- 9. Outlier detection/5. Code challenge.mp4 39MB
- 4. Working with complex numbers/4. Multiplication with complex numbers.mp4 39MB
- 8. Resampling, interpolating, extrapolating/7. Extrapolation.mp4 37MB
- 1. Introductions/3. Using Octave-online in this course.mp4 34MB
- 1. Introductions/1. Signal processing = decision-making + tools.mp4 33MB
- 11. Variability/4. Coefficient of variation (CV).mp4 29MB
- 1. Introductions/6. Using the Q&A forum.mp4 27MB
- 8. Resampling, interpolating, extrapolating/10. Code challenge denoise and downsample this signal!.mp4 25MB
- 1. Introductions/2. Using MATLAB in this course.mp4 24MB
- 10. Feature detection/8. Code challenge find the features!.mp4 24MB
- 1. Introductions/4. Using Python in this course.mp4 24MB
- 11. Variability/6. Code challenge.mp4 24MB
- 4. Working with complex numbers/5. The complex conjugate.mp4 23MB
- 6. Convolution/4. Why is the kernel flipped backwards!!!.mp4 23MB
- 11. Variability/1.1 sigprocMXC_variability.zip.zip 22MB
- 4. Working with complex numbers/3. Addition and subtraction with complex numbers.mp4 20MB
- 4. Working with complex numbers/6. Division with complex numbers.mp4 19MB
- 6. Convolution/6.1 TFtheory.mp4.mp4 18MB
- 6. Convolution/10. Code challenge Create a frequency-domain mean-smoothing filter.mp4 17MB
- 3. Spectral and rhythmicity analyses/6. Code challenge Compute a spectrogram!.mp4 15MB
- 7. Wavelet analysis/10. Code challenge Compare wavelet convolution and FIR filter!.mp4 13MB
- 2. Time series denoising/7. Remove linear trend (detrending).mp4 13MB
- 2. Time series denoising/1.1 sigprocMXC_TimeSeriesDenoising.zip.zip 12MB
- 5. Filtering/17. Code challenge Filter these signals!.mp4 11MB
- 2. Time series denoising/11. Code challenge Denoise these signals!.mp4 8MB
- 5. Filtering/1.1 sigprocMXC_filtering.zip.zip 5MB
- 3. Spectral and rhythmicity analyses/1.1 sigprocMXC_spectral.zip.zip 2MB
- 10. Feature detection/1.1 sigprocMXC_featuredet.zip.zip 2MB
- 7. Wavelet analysis/1.1 sigprocMXC_wavelets.zip.zip 770KB
- 8. Resampling, interpolating, extrapolating/1.1 sigprocMXC_resampling.zip.zip 411KB
- 9. Outlier detection/1.1 sigprocMXC_outliers.zip.zip 268KB
- 6. Convolution/1.1 sigprocMXC_convolution.zip.zip 250KB
- 4. Working with complex numbers/1.1 sigprocMXC_complex.zip.zip 38KB
- 3. Spectral and rhythmicity analyses/3. Fourier transform for spectral analyses.vtt 23KB
- 10. Feature detection/7. Full width at half-maximum.vtt 21KB
- 10. Feature detection/6. Application Detect muscle movements from EMG recordings.vtt 21KB
- 11. Variability/5. Entropy.vtt 20KB
- 8. Resampling, interpolating, extrapolating/9. Dynamic time warping.vtt 20KB
- 5. Filtering/2. Filtering Intuition, goals, and types.vtt 19KB
- 10. Feature detection/2. Local maxima and minima.vtt 19KB
- 3. Spectral and rhythmicity analyses/2. Crash course on the Fourier transform.vtt 19KB
- 3. Spectral and rhythmicity analyses/4. Welch's method and windowing.vtt 18KB
- 2. Time series denoising/8. Remove nonlinear trend with polynomials.vtt 18KB
- 11. Variability/3. Signal-to-noise ratio (SNR).vtt 18KB
- 7. Wavelet analysis/8. MATLAB Time-frequency analysis with complex wavelets.vtt 18KB
- 5. Filtering/3. FIR filters with firls.vtt 18KB
- 7. Wavelet analysis/2. What are wavelets.vtt 17KB
- 7. Wavelet analysis/5. Wavelet convolution for narrowband filtering.vtt 17KB
- 10. Feature detection/4. Wavelet convolution for feature extraction.vtt 17KB
- 2. Time series denoising/3. Gaussian-smooth a time series.vtt 16KB
- 8. Resampling, interpolating, extrapolating/2. Upsampling.vtt 16KB
- 6. Convolution/3. Convolution in MATLAB.vtt 16KB
- 10. Feature detection/5. Area under the curve.vtt 15KB
- 6. Convolution/6. Thinking about convolution as spectral multiplication.vtt 15KB
- 8. Resampling, interpolating, extrapolating/3. Downsampling.vtt 15KB
- 6. Convolution/2. Time-domain convolution.vtt 15KB
- 10. Feature detection/3. Recover signal from noise amplitude.vtt 15KB
- 5. Filtering/10. Windowed-sinc filters.vtt 14KB
- 5. Filtering/7. Avoid edge effects with reflection.vtt 14KB
- 5. Filtering/14. Quantifying roll-off characteristics.vtt 13KB
- 8. Resampling, interpolating, extrapolating/6. Resample irregularly sampled data.vtt 13KB
- 11. Variability/2. Total and windowed variance and RMS.vtt 13KB
- 8. Resampling, interpolating, extrapolating/8. Spectral interpolation.vtt 12KB
- 4. Working with complex numbers/2. From the number line to the complex number plane.vtt 12KB
- 5. Filtering/5. IIR Butterworth filters.vtt 12KB
- 2. Time series denoising/10. Remove artifact via least-squares template-matching.vtt 12KB
- 2. Time series denoising/6. Median filter to remove spike noise.vtt 12KB
- 5. Filtering/15. Remove electrical line noise and its harmonics.vtt 12KB
- 6. Convolution/5. The convolution theorem.vtt 12KB
- 5. Filtering/6. Causal and zero-phase-shift filters.vtt 12KB
- 9. Outlier detection/2. Outliers via standard deviation threshold.vtt 12KB
- 9. Outlier detection/3. Outliers via local threshold exceedance.vtt 11KB
- 2. Time series denoising/2. Mean-smooth a time series.vtt 10KB
- 7. Wavelet analysis/9. Time-frequency analysis of brain signals.vtt 10KB
- 5. Filtering/8. Data length and filter kernel length.vtt 10KB
- 2. Time series denoising/5. Denoising EMG signals via TKEO.vtt 10KB
- 3. Spectral and rhythmicity analyses/5. Spectrogram of birdsong.vtt 10KB
- 7. Wavelet analysis/6. Overview Time-frequency analysis with complex wavelets.vtt 10KB
- 8. Resampling, interpolating, extrapolating/5. Interpolation.vtt 9KB
- 4. Working with complex numbers/7. Magnitude and phase of complex numbers.vtt 9KB
- 5. Filtering/9. Low-pass filters.vtt 9KB
- 1. Introductions/5. Writing code vs. using toolboxesprograms.vtt 8KB
- 6. Convolution/8. Convolution with frequency-domain Gaussian (narrowband filter).vtt 8KB
- 4. Working with complex numbers/4. Multiplication with complex numbers.vtt 8KB
- 8. Resampling, interpolating, extrapolating/4. Strategies for multirate signals.vtt 8KB
- 5. Filtering/12. Narrow-band filters.vtt 8KB
- 5. Filtering/16. Use filtering to separate birds in a recording.vtt 8KB
- 6. Convolution/9. Convolution with frequency-domain Planck taper (bandpass filter).vtt 7KB
- 6. Convolution/7. Convolution with time-domain Gaussian (smoothing filter).vtt 7KB
- 5. Filtering/11. High-pass filters.vtt 7KB
- 8. Resampling, interpolating, extrapolating/7. Extrapolation.vtt 7KB
- 9. Outlier detection/4. Outlier time windows via sliding RMS.vtt 7KB
- 5. Filtering/4. FIR filters with fir1.vtt 7KB
- 7. Wavelet analysis/3. Convolution with wavelets.vtt 7KB
- 2. Time series denoising/9. Averaging multiple repetitions (time-synchronous averaging).vtt 6KB
- 2. Time series denoising/4. Gaussian-smooth a spike time series.vtt 6KB
- 1. Introductions/6. Using the Q&A forum.vtt 6KB
- 1. Introductions/3. Using Octave-online in this course.vtt 6KB
- 11. Variability/4. Coefficient of variation (CV).vtt 6KB
- 6. Convolution/4. Why is the kernel flipped backwards!!!.vtt 6KB
- 5. Filtering/13. Two-stage wide-band filter.vtt 5KB
- 4. Working with complex numbers/5. The complex conjugate.vtt 5KB
- 1. Introductions/1. Signal processing = decision-making + tools.vtt 5KB
- 8. Resampling, interpolating, extrapolating/10. Code challenge denoise and downsample this signal!.vtt 5KB
- 1. Introductions/2. Using MATLAB in this course.vtt 5KB
- 9. Outlier detection/5. Code challenge.vtt 5KB
- 4. Working with complex numbers/6. Division with complex numbers.vtt 4KB
- 4. Working with complex numbers/3. Addition and subtraction with complex numbers.vtt 4KB
- 1. Introductions/4. Using Python in this course.vtt 4KB
- 10. Feature detection/8. Code challenge find the features!.vtt 4KB
- 11. Variability/6. Code challenge.vtt 4KB
- 3. Spectral and rhythmicity analyses/6. Code challenge Compute a spectrogram!.vtt 3KB
- 2. Time series denoising/7. Remove linear trend (detrending).vtt 3KB
- 7. Wavelet analysis/10. Code challenge Compare wavelet convolution and FIR filter!.vtt 3KB
- 12. Discounts on related courses/2. Bonus Coupons for related courses.html 3KB
- 6. Convolution/10. Code challenge Create a frequency-domain mean-smoothing filter.vtt 2KB
- 5. Filtering/17. Code challenge Filter these signals!.vtt 2KB
- 2. Time series denoising/11. Code challenge Denoise these signals!.vtt 1KB
- 7. Wavelet analysis/7. Link to youtube channel with 3 hours of relevant material.html 621B
- 12. Discounts on related courses/1. Join the community!.html 553B
- 7. Wavelet analysis/4. Scientific publication about defining Morlet wavelets.html 465B
- Visit Getnewcourses.com.url 343B
- Visit Freecourseit.com.url 342B
- 1. Introductions/ReadMe.txt 241B
- ReadMe.txt 241B
- 3. Spectral and rhythmicity analyses/1. MATLAB and Python code for this section.html 99B
- 5. Filtering/1. MATLAB and Python code for this section.html 85B
- 2. Time series denoising/1. MATLAB and Python code for this section.html 84B
- 7. Wavelet analysis/1. MATLAB and Python code for this section.html 84B
- 10. Feature detection/1. MATLAB and Python code for this section.html 73B
- 6. Convolution/1. MATLAB and Python code for this section.html 72B
- 9. Outlier detection/1. MATLAB and Python code for this section.html 72B
- 8. Resampling, interpolating, extrapolating/1. MATLAB and Python code for this section.html 67B
- 11. Variability/1. MATLAB and Python code for this section.html 47B
- 4. Working with complex numbers/1. MATLAB and Python code for this section.html 46B