[] Udemy - The Complete Pandas Bootcamp Master your Data in Python
- 收录时间:2019-12-18 22:14:17
- 文件大小:10GB
- 下载次数:50
- 最近下载:2020-09-25 04:05:37
- 磁力链接:
-
文件列表
- 22. Python Basics/7. Data Types Lists (Part 2).mp4 134MB
- 17. -----PART III COMPREHENSIVE PROJECT CHALLENGE -------/4. Olympic Medal Tables (Solution Part 2).mp4 129MB
- 22. Python Basics/18. Visualization with Matplotlib.mp4 124MB
- 19. Time Series Basics/5. Creating a customized DatetimeIndex with pd.date_range().mp4 115MB
- 3. Pandas Basics (DataFrame Basics I)/5. Coding Exercise 0 Coding the Video Lectures.mp4 109MB
- 8. Visualization with Matplotlib/3. Customization of Plots.mp4 103MB
- 14. Reshaping and Pivoting DataFrames/6. pd.crosstab().mp4 99MB
- 12. Merging, Joining, and Concatenating Data/13. Joining on different Column Names Indexes.mp4 95MB
- 3. Pandas Basics (DataFrame Basics I)/17. Slicing Rows and Columns with loc (label-based indexing).mp4 91MB
- 10. Importing Data/1. Importing csv-files with pd.read_csv.mp4 91MB
- 11. Cleaning Data/5. Detection of missing Values.mp4 89MB
- 11. Cleaning Data/10. Handling Removing Duplicates.mp4 89MB
- 12. Merging, Joining, and Concatenating Data/2. Adding Rows with append() and pd.concat() (Part 1).mp4 88MB
- 1. Getting Started/5. Installation of Anaconda.mp4 86MB
- 22. Python Basics/11. Conditional Statements (if, elif, else, while).mp4 86MB
- 19. Time Series Basics/7. Downsampling Time Series with resample() (Part 1).mp4 85MB
- 11. Cleaning Data/6. Removing missing values.mp4 85MB
- 15. Data Preparation and Feature Creation/8. Discretization and Binning with pd.qcut().mp4 85MB
- 16. Advanced Visualization with Seaborn/3. Categorical Plots.mp4 85MB
- 23. The Numpy Package/11. Visualization and (Linear) Regression.mp4 85MB
- 13. GroupBy Operations/15. Coding Exercise 13 (Solution).mp4 82MB
- 11. Cleaning Data/2. String Operations.mp4 81MB
- 12. Merging, Joining, and Concatenating Data/6. Outer Joins with merge().mp4 80MB
- 16. Advanced Visualization with Seaborn/4. Joint Plots Regression Plots.mp4 80MB
- 11. Cleaning Data/9. Detection of Duplicates.mp4 79MB
- 13. GroupBy Operations/12. stack() and unstack().mp4 79MB
- 20. Time Series Advanced Financial Time Series/12. Filling NA Values with bfill, ffill and interpolation.mp4 78MB
- 22. Python Basics/5. Data Types Strings.mp4 78MB
- 4. Pandas Series and Index Objects/5. EXCURSUS Updating Pandas Anaconda.mp4 77MB
- 4. Pandas Series and Index Objects/19. Changing Row Index with set_index() and reset_index().mp4 75MB
- 7. DataFrame Basics III/9. User-defined Functions with apply(), map() and applymap().mp4 74MB
- 10. Importing Data/4. NEW Importing Data from Excel with pd.read_excel().mp4 74MB
- 23. The Numpy Package/5. Numpy Arrays Indexing and Slicing of multi-dimensional Arrays.mp4 74MB
- 15. Data Preparation and Feature Creation/6. Discretization and Binning with pd.cut() (Part 1).mp4 73MB
- 4. Pandas Series and Index Objects/3. Analyzing Numerical Series with unique(), nunique() and value_counts().mp4 73MB
- 7. DataFrame Basics III/11. Hierarchical Indexing (Part 2).mp4 73MB
- 7. DataFrame Basics III/10. Hierarchical Indexing (Part 1).mp4 73MB
- 10. Importing Data/5. Importing messy Data from Excel with pd.read_excel().mp4 72MB
- 20. Time Series Advanced Financial Time Series/3. NEW Importing Stock Price Data from Yahoo Finance (it still works!).mp4 72MB
- 13. GroupBy Operations/5. split-apply-combine applied.mp4 71MB
- 8. Visualization with Matplotlib/2. The plot() method.mp4 70MB
- 14. Reshaping and Pivoting DataFrames/2. Transposing Rows and Columns.mp4 68MB
- 11. Cleaning Data/1. First Inspection & Handling of inconsistent Data.mp4 68MB
- 23. The Numpy Package/7. Generating Random Numbers.mp4 68MB
- 1. Getting Started/7. How to use Jupyter Notebooks.mp4 66MB
- 4. Pandas Series and Index Objects/9. Indexing and Slicing Pandas Series.mp4 66MB
- 5. DataFrame Basics II/5. Advanced Filtering with between(), isin() and ~.mp4 66MB
- 1. Getting Started/6. Opening a Jupyter Notebook.mp4 65MB
- 23. The Numpy Package/2. Numpy Arrays Vectorization.mp4 65MB
- 22. Python Basics/15. User Defined Functions (Part 1).mp4 64MB
- 15. Data Preparation and Feature Creation/2. Arithmetic Operations (Part 1).mp4 64MB
- 10. Importing Data/2. Importing messy csv-files with pd.read_csv.mp4 63MB
- 3. Pandas Basics (DataFrame Basics I)/9. Explore your own Dataset Coding Exercise 1 (Intro).mp4 63MB
- 22. Python Basics/6. Data Types Lists (Part 1).mp4 63MB
- 3. Pandas Basics (DataFrame Basics I)/19. Summary and Outlook.mp4 62MB
- 6. Manipulating Elements in a DataFrame Slice +++Important, know the Pitfalls!+++/3. Chained Indexing How you should NOT do it (Part 1).mp4 60MB
- 22. Python Basics/10. Operators & Booleans.mp4 60MB
- 6. Manipulating Elements in a DataFrame Slice +++Important, know the Pitfalls!+++/4. Chained Indexing How you should NOT do it (Part 2).mp4 59MB
- 15. Data Preparation and Feature Creation/3. Arithmetic Operations (Part 2).mp4 58MB
- 22. Python Basics/12. For Loops.mp4 58MB
- 14. Reshaping and Pivoting DataFrames/4. Limits of pivot().mp4 58MB
- 7. DataFrame Basics III/15. Coding Exercise 8 (Solution).mp4 58MB
- 14. Reshaping and Pivoting DataFrames/5. pivot_table().mp4 58MB
- 10. Importing Data/6. Importing Data from the Web with pd.read_html().mp4 58MB
- 19. Time Series Basics/2. Converting strings to datetime objects with pd.to_datetime().mp4 58MB
- 17. -----PART III COMPREHENSIVE PROJECT CHALLENGE -------/2. Olympic Medal Tables (Instruction & Hints).mp4 58MB
- 5. DataFrame Basics II/15. Coding Exercise 5 (Solution).mp4 58MB
- 7. DataFrame Basics III/5. Summary Statistics and Accumulations.mp4 57MB
- 22. Python Basics/16. User Defined Functions (Part 2).mp4 57MB
- 12. Merging, Joining, and Concatenating Data/3. Adding Rows with pd.concat() (Part 2).mp4 57MB
- 3. Pandas Basics (DataFrame Basics I)/4. First Steps (Inspection of Data, Part 2).mp4 57MB
- 15. Data Preparation and Feature Creation/10. Scaling Standardization.mp4 56MB
- 14. Reshaping and Pivoting DataFrames/3. Pivoting DataFrames with pivot().mp4 56MB
- 15. Data Preparation and Feature Creation/11. Creating Dummy Variables.mp4 55MB
- 7. DataFrame Basics III/13. String Operations (Part 2).mp4 55MB
- 3. Pandas Basics (DataFrame Basics I)/7. Make it easy TAB Completion and Tooltip.mp4 54MB
- 7. DataFrame Basics III/2. Sorting DataFrames with sort_index() and sort_values().mp4 54MB
- 3. Pandas Basics (DataFrame Basics I)/13. Selecting Rows with iloc (position-based indexing).mp4 54MB
- 20. Time Series Advanced Financial Time Series/9. Financial Time Series - Return and Risk.mp4 54MB
- 23. The Numpy Package/3. Numpy Arrays Indexing and Slicing.mp4 53MB
- 5. DataFrame Basics II/2. Filtering DataFrames by one Condition.mp4 53MB
- 6. Manipulating Elements in a DataFrame Slice +++Important, know the Pitfalls!+++/2. Best Practice (How you should do it).mp4 53MB
- 22. Python Basics/17. User Defined Functions (Part 3).mp4 52MB
- 10. Importing Data/3. OLD Importing Data from Excel with pd.read_excel().mp4 52MB
- 3. Pandas Basics (DataFrame Basics I)/3. First Steps (Inspection of Data, Part 1).mp4 52MB
- 3. Pandas Basics (DataFrame Basics I)/6. Built-in Functions, Attributes and Methods with Pandas.mp4 51MB
- 19. Time Series Basics/10. Advanced Indexing with reindex().mp4 50MB
- 13. GroupBy Operations/3. Splitting with many Keys.mp4 50MB
- 23. The Numpy Package/8. Performance Issues.mp4 50MB
- 5. DataFrame Basics II/8. Removing Rows.mp4 50MB
- 22. Python Basics/4. Data Types Integers and Floats.mp4 49MB
- 14. Reshaping and Pivoting DataFrames/7. melting DataFrames with melt().mp4 49MB
- 19. Time Series Basics/8. Downsampling Time Series with resample (Part 2).mp4 49MB
- 1. Getting Started/1. Overview Student FAQ.mp4 48MB
- 19. Time Series Basics/4. Indexing and Slicing Time Series.mp4 48MB
- 13. GroupBy Operations/4. split-apply-combine explained.mp4 47MB
- 13. GroupBy Operations/2. Understanding the GroupBy Object.mp4 46MB
- 6. Manipulating Elements in a DataFrame Slice +++Important, know the Pitfalls!+++/6. Simple Rules what to do when....mp4 46MB
- 11. Cleaning Data/4. Intro NA values missing values.mp4 46MB
- 23. The Numpy Package/9. Case Study Numpy vs. Python Standard Library.mp4 46MB
- 11. Cleaning Data/13. Categorical Data.mp4 45MB
- 23. The Numpy Package/13. Numpy Quiz Solution.mp4 45MB
- 23. The Numpy Package/10. Summary Statistics.mp4 45MB
- 13. GroupBy Operations/9. Replacing NA Values by group-specific Values.mp4 45MB
- 20. Time Series Advanced Financial Time Series/11. Helpful DatetimeIndex Attributes and Methods.mp4 44MB
- 20. Time Series Advanced Financial Time Series/5. Normalizing Time Series to a Base Value (100).mp4 44MB
- 23. The Numpy Package/6. Numpy Arrays Boolean Indexing.mp4 44MB
- 11. Cleaning Data/11. Detection of Outliers.mp4 44MB
- 20. Time Series Advanced Financial Time Series/8. Measuring Stock Performance with MEAN Returns and STD of Returns.mp4 44MB
- 1. Getting Started/2. Tips How to get the most out of this course.mp4 44MB
- 7. DataFrame Basics III/3. Ranking DataFrames with rank().mp4 43MB
- 4. Pandas Series and Index Objects/17. First Steps with Pandas Index Objects.mp4 43MB
- 4. Pandas Series and Index Objects/6. Analyzing non-numerical Series with unique(), nunique(), value_counts().mp4 43MB
- 16. Advanced Visualization with Seaborn/5. Matrixplots Heatmaps.mp4 43MB
- 13. GroupBy Operations/10. Generalizing split-apply-combine with apply().mp4 43MB
- 15. Data Preparation and Feature Creation/4. TransformationMapping with map().mp4 43MB
- 20. Time Series Advanced Financial Time Series/4. Initial Inspection and Visualization.mp4 42MB
- 22. Python Basics/8. Data Types Tuples.mp4 42MB
- 19. Time Series Basics/1. Importing Time Series Data from csv-files.mp4 42MB
- 4. Pandas Series and Index Objects/10. Sorting of Series and Introduction to the inplace - parameter.mp4 41MB
- 7. DataFrame Basics III/12. String Operations (Part 1).mp4 41MB
- 23. The Numpy Package/1. Introduction to Numpy Arrays.mp4 41MB
- 20. Time Series Advanced Financial Time Series/7. The methods diff() and pct_change().mp4 40MB
- 7. DataFrame Basics III/8. Coding Exercise 7 (Solution).mp4 40MB
- 6. Manipulating Elements in a DataFrame Slice +++Important, know the Pitfalls!+++/9. Coding Exercise 6 (Solution).mp4 39MB
- 15. Data Preparation and Feature Creation/9. Floors and Caps.mp4 39MB
- 3. Pandas Basics (DataFrame Basics I)/22. Coding Exercise 2 (Solution).mp4 39MB
- 12. Merging, Joining, and Concatenating Data/4. Arithmetic with Pandas Objects Data Alignment.mp4 39MB
- 11. Cleaning Data/3. Changing Datatype of Columns with astype().mp4 39MB
- 19. Time Series Basics/9. The PeriodIndex object.mp4 39MB
- 12. Merging, Joining, and Concatenating Data/14. Joining on more than one Column.mp4 39MB
- 4. Pandas Series and Index Objects/16. Coding Exercise 3 (Solution).mp4 39MB
- 3. Pandas Basics (DataFrame Basics I)/11. Selecting Columns.mp4 39MB
- 17. -----PART III COMPREHENSIVE PROJECT CHALLENGE -------/3. Olympic Medal Tables (Solution Part 1).mp4 38MB
- 22. Python Basics/20. Python Basics Quiz Solution.mp4 38MB
- 22. Python Basics/14. Generating Random Numbers.mp4 38MB
- 4. Pandas Series and Index Objects/7. Creating Pandas Series (Part 1).mp4 38MB
- 4. Pandas Series and Index Objects/13. Manipulating Pandas Series.mp4 38MB
- 8. Visualization with Matplotlib/9. Coding Exercise 9 (Solution).mp4 37MB
- 22. Python Basics/13. Key words break, pass, continue.mp4 37MB
- 8. Visualization with Matplotlib/7. Scatterplots.mp4 36MB
- 5. DataFrame Basics II/7. Removing Columns.mp4 36MB
- 4. Pandas Series and Index Objects/2. First Steps with Pandas Series.mp4 36MB
- 20. Time Series Advanced Financial Time Series/6. The shift() method.mp4 36MB
- 23. The Numpy Package/4. Numpy Arrays Shape and Dimensions.mp4 36MB
- 12. Merging, Joining, and Concatenating Data/15. pd.merge() and join().mp4 35MB
- 13. GroupBy Operations/8. Transformation with transform().mp4 35MB
- 19. Time Series Basics/3. Initial Analysis Visualization of Time Series.mp4 35MB
- 5. DataFrame Basics II/10. Creating Columns based on other Columns.mp4 35MB
- 6. Manipulating Elements in a DataFrame Slice +++Important, know the Pitfalls!+++/5. View vs. Copy.mp4 35MB
- 22. Python Basics/2. First Steps.mp4 34MB
- 8. Visualization with Matplotlib/5. Histograms (Part 2).mp4 34MB
- 4. Pandas Series and Index Objects/21. Renaming Index & Column Labels with rename().mp4 34MB
- 15. Data Preparation and Feature Creation/5. Conditional Transformation.mp4 33MB
- 13. GroupBy Operations/11. Hierarchical Indexing with Groupby.mp4 33MB
- 15. Data Preparation and Feature Creation/7. Discretization and Binning with pd.cut() (Part 2).mp4 33MB
- 7. DataFrame Basics III/4. nunique() and nlargest() nsmallest() with DataFrames.mp4 33MB
- 12. Merging, Joining, and Concatenating Data/8. Outer Joins (without Intersection) with merge().mp4 31MB
- 22. Python Basics/3. Variables.mp4 31MB
- 1. Getting Started/3. Did you know that....mp4 31MB
- 5. DataFrame Basics II/4. Filtering DataFrames by many Conditions (OR).mp4 31MB
- 3. Pandas Basics (DataFrame Basics I)/16. Selecting Rows with loc (label-based indexing).mp4 30MB
- 13. GroupBy Operations/7. Advanced aggregation with agg().mp4 30MB
- 3. Pandas Basics (DataFrame Basics I)/10. Explore your own Dataset Coding Exercise 1 (Solution).mp4 30MB
- 11. Cleaning Data/12. Handling Removing Outliers.mp4 30MB
- 15. Data Preparation and Feature Creation/12. String Operations.mp4 30MB
- 4. Pandas Series and Index Objects/12. idxmin() and idxmax().mp4 29MB
- 12. Merging, Joining, and Concatenating Data/12. Right Joins with merge().mp4 27MB
- 17. -----PART III COMPREHENSIVE PROJECT CHALLENGE -------/5. Olympic Medal Tables (Solution Part 3).mp4 27MB
- 4. Pandas Series and Index Objects/8. Creating Pandas Series (Part 2).mp4 27MB
- 4. Pandas Series and Index Objects/24. Coding Exercise 4 (Solution).mp4 26MB
- 3. Pandas Basics (DataFrame Basics I)/14. Slicing Rows and Columns with iloc (position-based indexing).mp4 26MB
- 5. DataFrame Basics II/3. Filtering DataFrames by many Conditions (AND).mp4 26MB
- 3. Pandas Basics (DataFrame Basics I)/1. Intro to Tabular Data Pandas.mp4 26MB
- 20. Time Series Advanced Financial Time Series/10. Financial Time Series - Covariance and Correlation.mp4 26MB
- 11. Cleaning Data/7. Replacing missing values.mp4 25MB
- 8. Visualization with Matplotlib/4. Histograms (Part 1).mp4 25MB
- 12. Merging, Joining, and Concatenating Data/11. Left Joins with merge().mp4 24MB
- 7. DataFrame Basics III/6. The agg() method.mp4 23MB
- 16. Advanced Visualization with Seaborn/2. First Steps in Seaborn.mp4 22MB
- 3. Pandas Basics (DataFrame Basics I)/12. Selecting Rows with Square Brackets (not advisable).mp4 22MB
- 12. Merging, Joining, and Concatenating Data/9. Left Joins (without Intersection) with merge().mp4 22MB
- 20. Time Series Advanced Financial Time Series/2. NEW Getting Ready (Installing required package).mp4 22MB
- 22. Python Basics/9. Data Types Sets.mp4 21MB
- 4. Pandas Series and Index Objects/20. Changing Column Labels.mp4 21MB
- 11. Cleaning Data/8. Intro Duplicates.mp4 20MB
- 8. Visualization with Matplotlib/6. Barcharts and Piecharts.mp4 20MB
- 5. DataFrame Basics II/9. Adding new Columns to a DataFrame.mp4 18MB
- 5. DataFrame Basics II/6. any() and all().mp4 18MB
- 4. Pandas Series and Index Objects/11. nlargest() and nsmallest().mp4 17MB
- 12. Merging, Joining, and Concatenating Data/7. Inner Joins with merge().mp4 16MB
- 12. Merging, Joining, and Concatenating Data/10. Right Joins (without Intersection) with merge().mp4 15MB
- 15. Data Preparation and Feature Creation/13. Coding Exercise 15 (Intro).mp4 15MB
- 4. Pandas Series and Index Objects/18. Creating Index Objects from Scratch.mp4 15MB
- 3. Pandas Basics (DataFrame Basics I)/9.1 Pandas-Bootcamp-exc.zip.zip 15MB
- 4. Pandas Series and Index Objects/15. Coding Exercise 3 (Intro).mp4 14MB
- 5. DataFrame Basics II/11. Adding Columns with insert().mp4 13MB
- 10. Importing Data/7. Coding Exercise 10 (Intro).mp4 12MB
- 19. Time Series Basics/6. More on pd.date_range().mp4 12MB
- 13. GroupBy Operations/14. Coding Exercise 13 (Intro).mp4 12MB
- 11. Cleaning Data/14. Coding Exercise 11 (Intro).mp4 11MB
- 20. Time Series Advanced Financial Time Series/13. Coding Exercise 17 (Intro).mp4 11MB
- 5. DataFrame Basics II/14. Coding Exercise 5 (Intro).mp4 11MB
- 13. GroupBy Operations/1. Intro.mp4 10MB
- 7. DataFrame Basics III/7. Coding Exercise 7 (Intro).mp4 10MB
- 8. Visualization with Matplotlib/8. Coding Exercise 9 (Intro).mp4 10MB
- 4. Pandas Series and Index Objects/23. Coding Exercise 4 (Intro).mp4 9MB
- 16. Advanced Visualization with Seaborn/6. Coding Exercise 16 (Intro).mp4 9MB
- 6. Manipulating Elements in a DataFrame Slice +++Important, know the Pitfalls!+++/8. Coding Exercise 6 (Intro).mp4 9MB
- 3. Pandas Basics (DataFrame Basics I)/21. Coding Exercise 2 (Intro).mp4 9MB
- 12. Merging, Joining, and Concatenating Data/16. Coding Exercise 12 (Intro).mp4 9MB
- 7. DataFrame Basics III/14. Coding Exercise 8 (Intro).mp4 8MB
- 14. Reshaping and Pivoting DataFrames/8. Coding Exercsie 14 (Intro).mp4 7MB
- 22. Python Basics/1. Intro.mp4 6MB
- 17. -----PART III COMPREHENSIVE PROJECT CHALLENGE -------/1. Olympic Medal Tables (Intro).mp4 4MB
- 3. Pandas Basics (DataFrame Basics I)/5.1 Video_Lecture_NBs.zip.zip 3MB
- 17. -----PART III COMPREHENSIVE PROJECT CHALLENGE -------/4. Olympic Medal Tables (Solution Part 2).vtt 20KB
- 14. Reshaping and Pivoting DataFrames/6. pd.crosstab().vtt 19KB
- 22. Python Basics/7. Data Types Lists (Part 2).vtt 18KB
- 3. Pandas Basics (DataFrame Basics I)/5. Coding Exercise 0 Coding the Video Lectures.vtt 16KB
- 11. Cleaning Data/6. Removing missing values.vtt 16KB
- 19. Time Series Basics/5. Creating a customized DatetimeIndex with pd.date_range().vtt 16KB
- 11. Cleaning Data/5. Detection of missing Values.vtt 15KB
- 16. Advanced Visualization with Seaborn/3. Categorical Plots.vtt 15KB
- 1. Getting Started/7. How to use Jupyter Notebooks.vtt 15KB
- 22. Python Basics/18. Visualization with Matplotlib.vtt 14KB
- 13. GroupBy Operations/12. stack() and unstack().vtt 14KB
- 7. DataFrame Basics III/9. User-defined Functions with apply(), map() and applymap().vtt 14KB
- 12. Merging, Joining, and Concatenating Data/13. Joining on different Column Names Indexes.vtt 14KB
- 19. Time Series Basics/7. Downsampling Time Series with resample() (Part 1).vtt 14KB
- 23. The Numpy Package/13. Numpy Quiz Solution.vtt 14KB
- 15. Data Preparation and Feature Creation/8. Discretization and Binning with pd.qcut().vtt 14KB
- 12. Merging, Joining, and Concatenating Data/6. Outer Joins with merge().vtt 14KB
- 14. Reshaping and Pivoting DataFrames/5. pivot_table().vtt 14KB
- 12. Merging, Joining, and Concatenating Data/2. Adding Rows with append() and pd.concat() (Part 1).vtt 14KB
- 11. Cleaning Data/10. Handling Removing Duplicates.vtt 14KB
- 22. Python Basics/11. Conditional Statements (if, elif, else, while).vtt 13KB
- 13. GroupBy Operations/15. Coding Exercise 13 (Solution).vtt 13KB
- 11. Cleaning Data/9. Detection of Duplicates.vtt 13KB
- 4. Pandas Series and Index Objects/3. Analyzing Numerical Series with unique(), nunique() and value_counts().vtt 13KB
- 11. Cleaning Data/2. String Operations.vtt 13KB
- 15. Data Preparation and Feature Creation/2. Arithmetic Operations (Part 1).vtt 13KB
- 7. DataFrame Basics III/11. Hierarchical Indexing (Part 2).vtt 13KB
- 15. Data Preparation and Feature Creation/3. Arithmetic Operations (Part 2).vtt 13KB
- 10. Importing Data/4. NEW Importing Data from Excel with pd.read_excel().vtt 13KB
- 23. The Numpy Package/11. Visualization and (Linear) Regression.vtt 13KB
- 13. GroupBy Operations/5. split-apply-combine applied.vtt 12KB
- 22. Python Basics/20. Python Basics Quiz Solution.vtt 12KB
- 15. Data Preparation and Feature Creation/6. Discretization and Binning with pd.cut() (Part 1).vtt 12KB
- 16. Advanced Visualization with Seaborn/4. Joint Plots Regression Plots.vtt 12KB
- 8. Visualization with Matplotlib/3. Customization of Plots.vtt 12KB
- 11. Cleaning Data/1. First Inspection & Handling of inconsistent Data.vtt 12KB
- 14. Reshaping and Pivoting DataFrames/2. Transposing Rows and Columns.vtt 11KB
- 7. DataFrame Basics III/10. Hierarchical Indexing (Part 1).vtt 11KB
- 5. DataFrame Basics II/2. Filtering DataFrames by one Condition.vtt 11KB
- 14. Reshaping and Pivoting DataFrames/4. Limits of pivot().vtt 11KB
- 3. Pandas Basics (DataFrame Basics I)/17. Slicing Rows and Columns with loc (label-based indexing).vtt 11KB
- 10. Importing Data/3. OLD Importing Data from Excel with pd.read_excel().vtt 11KB
- 7. DataFrame Basics III/13. String Operations (Part 2).vtt 10KB
- 1. Getting Started/1. Overview Student FAQ.vtt 10KB
- 20. Time Series Advanced Financial Time Series/12. Filling NA Values with bfill, ffill and interpolation.vtt 10KB
- 4. Pandas Series and Index Objects/19. Changing Row Index with set_index() and reset_index().vtt 10KB
- 13. GroupBy Operations/4. split-apply-combine explained.vtt 10KB
- 7. DataFrame Basics III/5. Summary Statistics and Accumulations.vtt 10KB
- 3. Pandas Basics (DataFrame Basics I)/19. Summary and Outlook.vtt 10KB
- 14. Reshaping and Pivoting DataFrames/3. Pivoting DataFrames with pivot().vtt 10KB
- 4. Pandas Series and Index Objects/9. Indexing and Slicing Pandas Series.vtt 10KB
- 12. Merging, Joining, and Concatenating Data/3. Adding Rows with pd.concat() (Part 2).vtt 10KB
- 23. The Numpy Package/5. Numpy Arrays Indexing and Slicing of multi-dimensional Arrays.vtt 10KB
- 22. Python Basics/12. For Loops.vtt 10KB
- 22. Python Basics/5. Data Types Strings.vtt 10KB
- 19. Time Series Basics/2. Converting strings to datetime objects with pd.to_datetime().vtt 10KB
- 3. Pandas Basics (DataFrame Basics I)/9. Explore your own Dataset Coding Exercise 1 (Intro).vtt 10KB
- 15. Data Preparation and Feature Creation/11. Creating Dummy Variables.vtt 10KB
- 22. Python Basics/10. Operators & Booleans.vtt 10KB
- 1. Getting Started/6. Opening a Jupyter Notebook.vtt 10KB
- 6. Manipulating Elements in a DataFrame Slice +++Important, know the Pitfalls!+++/2. Best Practice (How you should do it).vtt 10KB
- 8. Visualization with Matplotlib/2. The plot() method.vtt 9KB
- 10. Importing Data/2. Importing messy csv-files with pd.read_csv.vtt 9KB
- 6. Manipulating Elements in a DataFrame Slice +++Important, know the Pitfalls!+++/3. Chained Indexing How you should NOT do it (Part 1).vtt 9KB
- 7. DataFrame Basics III/2. Sorting DataFrames with sort_index() and sort_values().vtt 9KB
- 14. Reshaping and Pivoting DataFrames/7. melting DataFrames with melt().vtt 9KB
- 7. DataFrame Basics III/15. Coding Exercise 8 (Solution).vtt 9KB
- 20. Time Series Advanced Financial Time Series/8. Measuring Stock Performance with MEAN Returns and STD of Returns.vtt 9KB
- 4. Pandas Series and Index Objects/10. Sorting of Series and Introduction to the inplace - parameter.vtt 9KB
- 11. Cleaning Data/4. Intro NA values missing values.vtt 9KB
- 5. DataFrame Basics II/15. Coding Exercise 5 (Solution).vtt 9KB
- 22. Python Basics/15. User Defined Functions (Part 1).vtt 9KB
- 11. Cleaning Data/11. Detection of Outliers.vtt 9KB
- 16. Advanced Visualization with Seaborn/5. Matrixplots Heatmaps.vtt 9KB
- 19. Time Series Basics/10. Advanced Indexing with reindex().vtt 9KB
- 19. Time Series Basics/8. Downsampling Time Series with resample (Part 2).vtt 9KB
- 20. Time Series Advanced Financial Time Series/3. NEW Importing Stock Price Data from Yahoo Finance (it still works!).vtt 9KB
- 20. Time Series Advanced Financial Time Series/9. Financial Time Series - Return and Risk.vtt 9KB
- 23. The Numpy Package/7. Generating Random Numbers.vtt 9KB
- 22. Python Basics/2. First Steps.vtt 9KB
- 13. GroupBy Operations/10. Generalizing split-apply-combine with apply().vtt 9KB
- 3. Pandas Basics (DataFrame Basics I)/6. Built-in Functions, Attributes and Methods with Pandas.vtt 9KB
- 23. The Numpy Package/2. Numpy Arrays Vectorization.vtt 9KB
- 3. Pandas Basics (DataFrame Basics I)/4. First Steps (Inspection of Data, Part 2).vtt 9KB
- 13. GroupBy Operations/2. Understanding the GroupBy Object.vtt 9KB
- 6. Manipulating Elements in a DataFrame Slice +++Important, know the Pitfalls!+++/6. Simple Rules what to do when....vtt 9KB
- 15. Data Preparation and Feature Creation/10. Scaling Standardization.vtt 9KB
- 22. Python Basics/6. Data Types Lists (Part 1).vtt 9KB
- 19. Time Series Basics/1. Importing Time Series Data from csv-files.vtt 8KB
- 17. -----PART III COMPREHENSIVE PROJECT CHALLENGE -------/2. Olympic Medal Tables (Instruction & Hints).vtt 8KB
- 4. Pandas Series and Index Objects/13. Manipulating Pandas Series.vtt 8KB
- 12. Merging, Joining, and Concatenating Data/14. Joining on more than one Column.vtt 8KB
- 6. Manipulating Elements in a DataFrame Slice +++Important, know the Pitfalls!+++/4. Chained Indexing How you should NOT do it (Part 2).vtt 8KB
- 11. Cleaning Data/13. Categorical Data.vtt 8KB
- 7. DataFrame Basics III/12. String Operations (Part 1).vtt 8KB
- 12. Merging, Joining, and Concatenating Data/4. Arithmetic with Pandas Objects Data Alignment.vtt 8KB
- 5. DataFrame Basics II/5. Advanced Filtering with between(), isin() and ~.vtt 8KB
- 10. Importing Data/6. Importing Data from the Web with pd.read_html().vtt 8KB
- 3. Pandas Basics (DataFrame Basics I)/11. Selecting Columns.vtt 8KB
- 7. DataFrame Basics III/3. Ranking DataFrames with rank().vtt 8KB
- 15. Data Preparation and Feature Creation/9. Floors and Caps.vtt 8KB
- 23. The Numpy Package/1. Introduction to Numpy Arrays.vtt 8KB
- 10. Importing Data/5. Importing messy Data from Excel with pd.read_excel().vtt 8KB
- 1. Getting Started/5. Installation of Anaconda.vtt 8KB
- 22. Python Basics/17. User Defined Functions (Part 3).vtt 8KB
- 13. GroupBy Operations/9. Replacing NA Values by group-specific Values.vtt 8KB
- 22. Python Basics/4. Data Types Integers and Floats.vtt 8KB
- 23. The Numpy Package/9. Case Study Numpy vs. Python Standard Library.vtt 8KB
- 4. Pandas Series and Index Objects/6. Analyzing non-numerical Series with unique(), nunique(), value_counts().vtt 8KB
- 20. Time Series Advanced Financial Time Series/6. The shift() method.vtt 7KB
- 19. Time Series Basics/4. Indexing and Slicing Time Series.vtt 7KB
- 23. The Numpy Package/10. Summary Statistics.vtt 7KB
- 3. Pandas Basics (DataFrame Basics I)/13. Selecting Rows with iloc (position-based indexing).vtt 7KB
- 20. Time Series Advanced Financial Time Series/7. The methods diff() and pct_change().vtt 7KB
- 15. Data Preparation and Feature Creation/5. Conditional Transformation.vtt 7KB
- 5. DataFrame Basics II/8. Removing Rows.vtt 7KB
- 23. The Numpy Package/3. Numpy Arrays Indexing and Slicing.vtt 7KB
- 8. Visualization with Matplotlib/7. Scatterplots.vtt 7KB
- 13. GroupBy Operations/3. Splitting with many Keys.vtt 7KB
- 22. Python Basics/3. Variables.vtt 7KB
- 11. Cleaning Data/3. Changing Datatype of Columns with astype().vtt 7KB
- 5. DataFrame Basics II/10. Creating Columns based on other Columns.vtt 7KB
- 4. Pandas Series and Index Objects/2. First Steps with Pandas Series.vtt 7KB
- 15. Data Preparation and Feature Creation/4. TransformationMapping with map().vtt 7KB
- 8. Visualization with Matplotlib/5. Histograms (Part 2).vtt 7KB
- 22. Python Basics/14. Generating Random Numbers.vtt 7KB
- 20. Time Series Advanced Financial Time Series/5. Normalizing Time Series to a Base Value (100).vtt 7KB
- 22. Python Basics/16. User Defined Functions (Part 2).vtt 7KB
- 22. Python Basics/8. Data Types Tuples.vtt 7KB
- 13. GroupBy Operations/11. Hierarchical Indexing with Groupby.vtt 7KB
- 4. Pandas Series and Index Objects/16. Coding Exercise 3 (Solution).vtt 7KB
- 13. GroupBy Operations/8. Transformation with transform().vtt 7KB
- 6. Manipulating Elements in a DataFrame Slice +++Important, know the Pitfalls!+++/9. Coding Exercise 6 (Solution).vtt 6KB
- 3. Pandas Basics (DataFrame Basics I)/22. Coding Exercise 2 (Solution).vtt 6KB
- 22. Python Basics/13. Key words break, pass, continue.vtt 6KB
- 4. Pandas Series and Index Objects/7. Creating Pandas Series (Part 1).vtt 6KB
- 20. Time Series Advanced Financial Time Series/11. Helpful DatetimeIndex Attributes and Methods.vtt 6KB
- 4. Pandas Series and Index Objects/5. EXCURSUS Updating Pandas Anaconda.vtt 6KB
- 19. Time Series Basics/9. The PeriodIndex object.vtt 6KB
- 16. Advanced Visualization with Seaborn/2. First Steps in Seaborn.vtt 6KB
- 23. The Numpy Package/6. Numpy Arrays Boolean Indexing.vtt 6KB
- 6. Manipulating Elements in a DataFrame Slice +++Important, know the Pitfalls!+++/5. View vs. Copy.vtt 6KB
- 13. GroupBy Operations/7. Advanced aggregation with agg().vtt 6KB
- 12. Merging, Joining, and Concatenating Data/15. pd.merge() and join().vtt 6KB
- 17. -----PART III COMPREHENSIVE PROJECT CHALLENGE -------/5. Olympic Medal Tables (Solution Part 3).vtt 6KB
- 23. The Numpy Package/4. Numpy Arrays Shape and Dimensions.vtt 6KB
- 23. The Numpy Package/8. Performance Issues.vtt 6KB
- 11. Cleaning Data/12. Handling Removing Outliers.vtt 6KB
- 19. Time Series Basics/3. Initial Analysis Visualization of Time Series.vtt 6KB
- 3. Pandas Basics (DataFrame Basics I)/3. First Steps (Inspection of Data, Part 1).vtt 6KB
- 4. Pandas Series and Index Objects/17. First Steps with Pandas Index Objects.vtt 6KB
- 1. Getting Started/2. Tips How to get the most out of this course.vtt 6KB
- 4. Pandas Series and Index Objects/8. Creating Pandas Series (Part 2).vtt 6KB
- 17. -----PART III COMPREHENSIVE PROJECT CHALLENGE -------/3. Olympic Medal Tables (Solution Part 1).vtt 6KB
- 3. Pandas Basics (DataFrame Basics I)/16. Selecting Rows with loc (label-based indexing).vtt 6KB
- 11. Cleaning Data/8. Intro Duplicates.vtt 6KB
- 7. DataFrame Basics III/4. nunique() and nlargest() nsmallest() with DataFrames.vtt 6KB
- 1. Getting Started/4. More FAQ Important Information.html 5KB
- 15. Data Preparation and Feature Creation/7. Discretization and Binning with pd.cut() (Part 2).vtt 5KB
- 4. Pandas Series and Index Objects/12. idxmin() and idxmax().vtt 5KB
- 3. Pandas Basics (DataFrame Basics I)/14. Slicing Rows and Columns with iloc (position-based indexing).vtt 5KB
- 5. DataFrame Basics II/7. Removing Columns.vtt 5KB
- 3. Pandas Basics (DataFrame Basics I)/1. Intro to Tabular Data Pandas.vtt 5KB
- 20. Time Series Advanced Financial Time Series/4. Initial Inspection and Visualization.vtt 5KB
- 7. DataFrame Basics III/8. Coding Exercise 7 (Solution).vtt 5KB
- 5. DataFrame Basics II/4. Filtering DataFrames by many Conditions (OR).vtt 5KB
- 8. Visualization with Matplotlib/9. Coding Exercise 9 (Solution).vtt 5KB
- 20. Time Series Advanced Financial Time Series/10. Financial Time Series - Covariance and Correlation.vtt 5KB
- 12. Merging, Joining, and Concatenating Data/8. Outer Joins (without Intersection) with merge().vtt 5KB
- 15. Data Preparation and Feature Creation/12. String Operations.vtt 5KB
- 4. Pandas Series and Index Objects/21. Renaming Index & Column Labels with rename().vtt 5KB
- 8. Visualization with Matplotlib/4. Histograms (Part 1).vtt 5KB
- 12. Merging, Joining, and Concatenating Data/11. Left Joins with merge().vtt 5KB
- 1. Getting Started/3. Did you know that....vtt 5KB
- 11. Cleaning Data/7. Replacing missing values.vtt 5KB
- 5. DataFrame Basics II/3. Filtering DataFrames by many Conditions (AND).vtt 5KB
- 3. Pandas Basics (DataFrame Basics I)/10. Explore your own Dataset Coding Exercise 1 (Solution).vtt 4KB
- 4. Pandas Series and Index Objects/24. Coding Exercise 4 (Solution).vtt 4KB
- 5. DataFrame Basics II/6. any() and all().vtt 4KB
- 12. Merging, Joining, and Concatenating Data/12. Right Joins with merge().vtt 4KB
- 8. Visualization with Matplotlib/6. Barcharts and Piecharts.vtt 4KB
- 3. Pandas Basics (DataFrame Basics I)/12. Selecting Rows with Square Brackets (not advisable).vtt 4KB
- 7. DataFrame Basics III/6. The agg() method.vtt 4KB
- 4. Pandas Series and Index Objects/11. nlargest() and nsmallest().vtt 4KB
- 22. Python Basics/9. Data Types Sets.vtt 4KB
- 4. Pandas Series and Index Objects/20. Changing Column Labels.vtt 3KB
- 5. DataFrame Basics II/9. Adding new Columns to a DataFrame.vtt 3KB
- 12. Merging, Joining, and Concatenating Data/9. Left Joins (without Intersection) with merge().vtt 3KB
- 19. Time Series Basics/6. More on pd.date_range().vtt 3KB
- 5. DataFrame Basics II/11. Adding Columns with insert().vtt 3KB
- 4. Pandas Series and Index Objects/18. Creating Index Objects from Scratch.vtt 3KB
- 12. Merging, Joining, and Concatenating Data/7. Inner Joins with merge().vtt 3KB
- 15. Data Preparation and Feature Creation/13. Coding Exercise 15 (Intro).vtt 3KB
- 12. Merging, Joining, and Concatenating Data/5. EXCURSUS Comparing two DataFrames Identify Differences.html 3KB
- 22. Python Basics/1. Intro.vtt 3KB
- 10. Importing Data/7. Coding Exercise 10 (Intro).vtt 2KB
- 20. Time Series Advanced Financial Time Series/2. NEW Getting Ready (Installing required package).vtt 2KB
- 13. GroupBy Operations/1. Intro.vtt 2KB
- 12. Merging, Joining, and Concatenating Data/10. Right Joins (without Intersection) with merge().vtt 2KB
- 4. Pandas Series and Index Objects/15. Coding Exercise 3 (Intro).vtt 2KB
- 13. GroupBy Operations/14. Coding Exercise 13 (Intro).vtt 2KB
- 11. Cleaning Data/14. Coding Exercise 11 (Intro).vtt 2KB
- 20. Time Series Advanced Financial Time Series/13. Coding Exercise 17 (Intro).vtt 2KB
- 6. Manipulating Elements in a DataFrame Slice +++Important, know the Pitfalls!+++/8. Coding Exercise 6 (Intro).vtt 2KB
- 5. DataFrame Basics II/14. Coding Exercise 5 (Intro).vtt 1KB
- 4. Pandas Series and Index Objects/23. Coding Exercise 4 (Intro).vtt 1KB
- 8. Visualization with Matplotlib/8. Coding Exercise 9 (Intro).vtt 1KB
- 24. Bonus/1. Bonus.html 1KB
- 3. Pandas Basics (DataFrame Basics I)/21. Coding Exercise 2 (Intro).vtt 1KB
- 7. DataFrame Basics III/7. Coding Exercise 7 (Intro).vtt 1KB
- 12. Merging, Joining, and Concatenating Data/16. Coding Exercise 12 (Intro).vtt 1KB
- 5. DataFrame Basics II/12. Adding new Rows (hands-on approach).html 1KB
- 7. DataFrame Basics III/14. Coding Exercise 8 (Intro).vtt 1KB
- 16. Advanced Visualization with Seaborn/6. Coding Exercise 16 (Intro).vtt 1KB
- 6. Manipulating Elements in a DataFrame Slice +++Important, know the Pitfalls!+++/1. Intro.html 1019B
- 20. Time Series Advanced Financial Time Series/1. Intro.html 976B
- 14. Reshaping and Pivoting DataFrames/8. Coding Exercsie 14 (Intro).vtt 968B
- 14. Reshaping and Pivoting DataFrames/1. Intro.html 894B
- 4. Pandas Series and Index Objects/1. Intro.html 838B
- 9. -----PART II FULL DATA WORKFLOW A-Z------/1. Welcome to PART II Full Data Analysis Workflow.html 818B
- 16. Advanced Visualization with Seaborn/1. Intro.html 775B
- 17. -----PART III COMPREHENSIVE PROJECT CHALLENGE -------/1. Olympic Medal Tables (Intro).vtt 748B
- 3. Pandas Basics (DataFrame Basics I)/18. Label-based Indexing Cheat Sheets.html 711B
- 15. Data Preparation and Feature Creation/1. Intro.html 710B
- 3. Pandas Basics (DataFrame Basics I)/15. Position-based Indexing Cheat Sheets.html 700B
- 8. Visualization with Matplotlib/1. Intro.html 680B
- 18. --------PART IV MANAGING TIME SERIES DATA WITH PANDAS----------/1. Welcome to Part III Time Series Data.html 660B
- 7. DataFrame Basics III/1. Intro.html 643B
- 2. --------PART I BUILDING BLOCKS--------/1. Welcome to PART I - Pandas Building Blocks.html 606B
- 12. Merging, Joining, and Concatenating Data/1. Intro.html 585B
- 21. ------APPENDIX PYTHON BASICS AND NUMPY--------/1. Welcome to the Appendix.html 429B
- 3. Pandas Basics (DataFrame Basics I)/2. Tabular Data Cheat Sheets.html 421B
- 10. Importing Data/8. Coding Exercise 10 (Solution).html 406B
- 5. DataFrame Basics II/1. Intro.html 406B
- 11. Cleaning Data/15. Coding Exercise 11 (Solution).html 398B
- 12. Merging, Joining, and Concatenating Data/17. Coding Exercise 12 (Solution).html 398B
- 14. Reshaping and Pivoting DataFrames/9. Coding Exercise 14 (Solution).html 398B
- 15. Data Preparation and Feature Creation/14. Coding Exercise 15 (Solution).html 398B
- 16. Advanced Visualization with Seaborn/7. Coding Exercise 16 (Solution).html 398B
- 20. Time Series Advanced Financial Time Series/14. Coding Exercise 17 (Solution).html 398B
- 4. Pandas Series and Index Objects/4. UPDATE Pandas Version 0.24.0 (Jan 2019).html 369B
- 3. Pandas Basics (DataFrame Basics I)/6.1 DataFrame Methods and Attributes.html 141B
- 3. Pandas Basics (DataFrame Basics I)/6.2 Pandas Series Methods and Attributes.html 138B
- 13. GroupBy Operations/13. GroupBy 2.html 123B
- 13. GroupBy Operations/6. GroupBy 1.html 123B
- 22. Python Basics/19. Python Basics.html 123B
- 23. The Numpy Package/12. Numpy.html 123B
- 3. Pandas Basics (DataFrame Basics I)/20. Indexing and Slicing.html 123B
- 3. Pandas Basics (DataFrame Basics I)/8. First Steps.html 123B
- 4. Pandas Series and Index Objects/14. Pandas Series.html 123B
- 4. Pandas Series and Index Objects/22. Pandas Index objects.html 123B
- 5. DataFrame Basics II/13. DataFrame Basics II.html 123B
- 6. Manipulating Elements in a DataFrame Slice +++Important, know the Pitfalls!+++/7. Manipulating DataFrames Slices.html 123B
- 4. Pandas Series and Index Objects/5.1 Updating Anaconda (Link).html 119B
- 1. Getting Started/5.1 Installing on Windows.html 112B
- 1. Getting Started/5.2 Installing on macOS.html 111B
- 1. Getting Started/5.3 Installing on Linux.html 110B
- [DesireCourse.Net].url 51B
- [CourseClub.Me].url 48B