589689.xyz

Udemy - Unsupervised Deep Learning in Python - TUTSEM

  • 收录时间:2020-03-16 22:08:29
  • 文件大小:556MB
  • 下载次数:62
  • 最近下载:2021-01-23 07:01:18
  • 磁力链接:

文件列表

  1. 05 Restricted Boltzmann Machines/026 RBM in Code Theano with Greedy Layer-Wise Training on MNIST.mp4 48MB
  2. 09 Appendix/036 How to install Numpy Scipy Matplotlib Pandas IPython Theano and TensorFlow.mp4 44MB
  3. 04 Autoencoders/017 Writing the deep neural network class in code Theano.mp4 42MB
  4. 04 Autoencoders/015 Writing the autoencoder class in code Theano.mp4 39MB
  5. 06 The Vanishing Gradient Problem/029 The Vanishing Gradient Problem Demo in Code.mp4 31MB
  6. 04 Autoencoders/022 Deep Autoencoder Visualization in Code.mp4 28MB
  7. 08 BONUS Application of PCA SVD to NLP Natural Language Processing/035 BONUS Application of t-SNE K-Means Finding Clusters of Related Words.mp4 26MB
  8. 08 BONUS Application of PCA SVD to NLP Natural Language Processing/034 BONUS Latent Semantic Analysis in Code.mp4 26MB
  9. 09 Appendix/037 How to Code by Yourself part 1.mp4 25MB
  10. 04 Autoencoders/018 Autoencoder in Code Tensorflow.mp4 24MB
  11. 04 Autoencoders/019 Testing greedy layer-wise autoencoder training vs. pure backpropagation.mp4 19MB
  12. 03 t-SNE t-distributed Stochastic Neighbor Embedding/009 t-SNE on the Donut.mp4 15MB
  13. 09 Appendix/038 How to Code by Yourself part 2.mp4 15MB
  14. 05 Restricted Boltzmann Machines/023 Restricted Boltzmann Machine Theory.mp4 14MB
  15. 05 Restricted Boltzmann Machines/027 RBM in Code Tensorflow.mp4 14MB
  16. 02 Principal Components Analysis/004 What does PCA do.mp4 11MB
  17. 04 Autoencoders/016 Testing our Autoencoder Theano.mp4 11MB
  18. 07 Extras Visualizing what features a neural network has learned/032 BONUS How to derive the free energy formula.mp4 11MB
  19. 01 Introduction and Outline/003 How to Succeed in this Course.mp4 10MB
  20. 02 Principal Components Analysis/006 MNIST visualization finding the optimal number of principal components.mp4 9MB
  21. 05 Restricted Boltzmann Machines/024 Deriving Conditional Probabilities from Joint Probability.mp4 9MB
  22. 03 t-SNE t-distributed Stochastic Neighbor Embedding/010 t-SNE on XOR.mp4 9MB
  23. 03 t-SNE t-distributed Stochastic Neighbor Embedding/008 t-SNE Theory.mp4 8MB
  24. 04 Autoencoders/020 Cross Entropy vs. KL Divergence.mp4 7MB
  25. 02 Principal Components Analysis/005 PCA derivation.mp4 7MB
  26. 04 Autoencoders/014 Stacked Autoencoders.mp4 7MB
  27. 04 Autoencoders/012 Autoencoders.mp4 6MB
  28. 06 The Vanishing Gradient Problem/028 The Vanishing Gradient Problem Description.mp4 5MB
  29. 01 Introduction and Outline/002 Where does this course fit into your deep learning studies.mp4 5MB
  30. 05 Restricted Boltzmann Machines/025 Contrastive Divergence for RBM Training.mp4 5MB
  31. 03 t-SNE t-distributed Stochastic Neighbor Embedding/011 t-SNE on MNIST.mp4 4MB
  32. 08 BONUS Application of PCA SVD to NLP Natural Language Processing/033 BONUS Application of PCA and SVD to NLP Natural Language Processing.mp4 4MB
  33. 07 Extras Visualizing what features a neural network has learned/030 Exercises on feature visualization and interpretation.mp4 4MB
  34. 02 Principal Components Analysis/007 PCA objective function.mp4 4MB
  35. 04 Autoencoders/013 Denoising Autoencoders.mp4 3MB
  36. 01 Introduction and Outline/001 Introduction and Outline.mp4 3MB
  37. 04 Autoencoders/021 Deep Autoencoder Visualization Description.mp4 2MB
  38. 07 Extras Visualizing what features a neural network has learned/031 BONUS Where to get Udemy coupons and FREE deep learning material.mp4 2MB
  39. Tutsem.com.lnk 3KB
  40. TUTSEM.COM.txt 317B
  41. Torrent downloaded from bt-scene.cc.txt 275B
  42. Torrent_downloaded_from_Demonoid_-_www.demonoid.pw_.txt 59B