[] Udemy - Spark and Python for Big Data with PySpark 收录时间:2020-02-16 02:44:51 文件大小:2GB 下载次数:46 最近下载:2021-01-04 04:20:18 磁力链接: magnet:?xt=urn:btih:d7e9295b964fe3f778be50b581e39db4d8110b03 立即下载 复制链接 文件列表 4. AWS EC2 PySpark Set-up/2. Creating the EC2 Instance.mp4 63MB 17. Spark Streaming with Python/5. Spark Streaming Twitter Project - Part Three.mp4 55MB 12. Logistic Regression/2. Logistic Regression Example Code Along.mp4 53MB 10. Introduction to Machine Learning with MLlib/2. Machine Learning with Spark and Python with MLlib.mp4 51MB 4. AWS EC2 PySpark Set-up/4. Installations on EC2.mp4 50MB 13. Decision Trees and Random Forests/3. Decision Tress and Random Forest Code Along Examples.mp4 49MB 1. Introduction to Course/4. What is Spark Why Python.mp4 48MB 3. Local VirtualBox Set-up/2. Local Installation VirtualBox Part 2.mp4 46MB 6. AWS EMR Cluster Setup/1. AWS EMR Setup.mp4 45MB 9. Spark DataFrame Project Exercise/2. DataFrame Project Exercise Solutions.mp4 45MB 12. Logistic Regression/3. Logistic Regression Code Along.mp4 41MB 11. Linear Regression/2. Linear Regression Documentation Example.mp4 41MB 11. Linear Regression/4. Linear Regression Example Code Along.mp4 39MB 11. Linear Regression/6. Linear Regression Consulting Project Solutions.mp4 39MB 3. Local VirtualBox Set-up/1. Local Installation VirtualBox Part 1.mp4 38MB 16. Natural Language Processing/2. NLP Tools Part One.mp4 36MB 16. Natural Language Processing/4. Natural Language Processing Code Along Project.mp4 35MB 13. Decision Trees and Random Forests/2. Tree Methods Documentation Examples.mp4 34MB 12. Logistic Regression/5. Logistic Regression Consulting Project Solutions.mp4 34MB 17. Spark Streaming with Python/1. Introduction to Streaming with Spark!.mp4 33MB 7. Python Crash Course/3. Python Crash Course Part One.mp4 30MB 17. Spark Streaming with Python/4. Spark Streaming Twitter Project - Part Two.mp4 29MB 8. Spark DataFrame Basics/5. Groupby and Aggregate Operations.mp4 29MB 17. Spark Streaming with Python/2. Spark Streaming Documentation Example.mp4 29MB 14. K-means Clustering/3. Clustering Example Code Along.mp4 28MB 5. Databricks Setup/1. Databricks Setup.mp4 28MB 8. Spark DataFrame Basics/4. Spark DataFrame Basic Operations.mp4 28MB 7. Python Crash Course/7. Python Crash Course Exercise Solutions.mp4 25MB 15. Collaborative Filtering for Recommender Systems/2. Recommender System - Code Along Project.mp4 25MB 8. Spark DataFrame Basics/7. Dates and Timestamps.mp4 24MB 7. Python Crash Course/5. Python Crash Course Part Three.mp4 23MB 14. K-means Clustering/5. Clustering Consulting Project Solutions.mp4 23MB 7. Python Crash Course/4. Python Crash Course Part Two.mp4 22MB 8. Spark DataFrame Basics/2. Spark DataFrame Basics.mp4 21MB 14. K-means Clustering/2. KMeans Clustering Documentation Example.mp4 21MB 12. Logistic Regression/1. Logistic Regression Theory and Reading.mp4 21MB 8. Spark DataFrame Basics/3. Spark DataFrame Basics Part Two.mp4 20MB 10. Introduction to Machine Learning with MLlib/1. Introduction to Machine Learning and ISLR.mp4 19MB 16. Natural Language Processing/3. NLP Tools Part Two.mp4 19MB 8. Spark DataFrame Basics/6. Missing Data.mp4 17MB 13. Decision Trees and Random Forests/5. Random Forest Classification Consulting Project Solutions.mp4 16MB 3. Local VirtualBox Set-up/3. Setting up PySpark.mp4 16MB 13. Decision Trees and Random Forests/1. Tree Methods Theory and Reading.mp4 15MB 1. Introduction to Course/2. Course Overview.mp4 14MB 16. Natural Language Processing/1. Introduction to Natural Language Processing.mp4 14MB 7. Python Crash Course/2. Jupyter Notebook Overview.mp4 13MB 14. K-means Clustering/1. K-means Clustering Theory and Reading.mp4 13MB 15. Collaborative Filtering for Recommender Systems/1. Introduction to Recommender Systems.mp4 13MB 11. Linear Regression/3. Regression Evaluation.mp4 12MB 9. Spark DataFrame Project Exercise/1. DataFrame Project Exercise.mp4 12MB 17. Spark Streaming with Python/3. Spark Streaming Twitter Project - Part.mp4 12MB 1. Introduction to Course/1. Introduction.mp4 12MB 2. Setting up Python with Spark/1. Set-up Overview.mp4 11MB 11. Linear Regression/1. Linear Regression Theory and Reading.mp4 10MB 4. AWS EC2 PySpark Set-up/3. SSH with Mac or Linux.mp4 9MB 11. Linear Regression/5. Linear Regression Consulting Project.mp4 7MB 14. K-means Clustering/4. Clustering Consulting Project.mp4 7MB 12. Logistic Regression/4. Logistic Regression Consulting Project.mp4 6MB 13. Decision Trees and Random Forests/4. Random Forest - Classification Consulting Project.mp4 5MB 4. AWS EC2 PySpark Set-up/1. AWS EC2 Set-up Guide.mp4 5MB 7. Python Crash Course/6. Python Crash Course Exercises.mp4 5MB 8. Spark DataFrame Basics/1. Introduction to Spark DataFrames.mp4 5MB 7. Python Crash Course/1. Introduction to Python Crash Course.mp4 3MB 1. Introduction to Course/2.2 Python-and-Spark-for-Big-Data-master.zip.zip 2MB 1. Introduction to Course/3.1 Python-and-Spark-for-Big-Data-master.zip.zip 2MB 11. Linear Regression/4.1 Ecommerce_Customers.csv.csv 85KB 13. Decision Trees and Random Forests/3. Decision Tress and Random Forest Code Along Examples.srt 31KB 1. Introduction to Course/4. What is Spark Why Python.srt 31KB 17. Spark Streaming with Python/5. Spark Streaming Twitter Project - Part Three.srt 29KB 12. Logistic Regression/3. Logistic Regression Code Along.srt 27KB 6. AWS EMR Cluster Setup/1. AWS EMR Setup.srt 26KB 4. AWS EC2 PySpark Set-up/2. Creating the EC2 Instance.srt 24KB 7. Python Crash Course/3. Python Crash Course Part One.srt 24KB 12. Logistic Regression/2. Logistic Regression Example Code Along.srt 24KB 11. Linear Regression/4. Linear Regression Example Code Along.srt 23KB 16. Natural Language Processing/2. NLP Tools Part One.srt 23KB 11. Linear Regression/6. Linear Regression Consulting Project Solutions.srt 23KB 9. Spark DataFrame Project Exercise/2. DataFrame Project Exercise Solutions.srt 22KB 11. Linear Regression/2. Linear Regression Documentation Example.srt 22KB 13. Decision Trees and Random Forests/2. Tree Methods Documentation Examples.srt 21KB 4. AWS EC2 PySpark Set-up/4. Installations on EC2.srt 20KB 16. Natural Language Processing/4. Natural Language Processing Code Along Project.srt 20KB 8. Spark DataFrame Basics/5. Groupby and Aggregate Operations.srt 19KB 5. Databricks Setup/1. Databricks Setup.srt 19KB 3. Local VirtualBox Set-up/2. Local Installation VirtualBox Part 2.srt 19KB 14. K-means Clustering/3. Clustering Example Code Along.srt 19KB 3. Local VirtualBox Set-up/1. Local Installation VirtualBox Part 1.srt 18KB 17. Spark Streaming with Python/4. Spark Streaming Twitter Project - Part Two.srt 18KB 15. Collaborative Filtering for Recommender Systems/2. Recommender System - Code Along Project.srt 18KB 12. Logistic Regression/1. Logistic Regression Theory and Reading.srt 18KB 10. Introduction to Machine Learning with MLlib/1. Introduction to Machine Learning and ISLR.srt 18KB 7. Python Crash Course/4. Python Crash Course Part Two.srt 18KB 17. Spark Streaming with Python/1. Introduction to Streaming with Spark!.srt 17KB 17. Spark Streaming with Python/2. Spark Streaming Documentation Example.srt 17KB 8. Spark DataFrame Basics/2. Spark DataFrame Basics.srt 16KB 7. Python Crash Course/5. Python Crash Course Part Three.srt 16KB 8. Spark DataFrame Basics/4. Spark DataFrame Basic Operations.srt 16KB 10. Introduction to Machine Learning with MLlib/2. Machine Learning with Spark and Python with MLlib.srt 16KB 12. Logistic Regression/5. Logistic Regression Consulting Project Solutions.srt 15KB 1. Introduction to Course/2. Course Overview.srt 15KB 14. K-means Clustering/2. KMeans Clustering Documentation Example.srt 15KB 8. Spark DataFrame Basics/7. Dates and Timestamps.srt 15KB 8. Spark DataFrame Basics/3. Spark DataFrame Basics Part Two.srt 14KB 8. Spark DataFrame Basics/6. Missing Data.srt 13KB 16. Natural Language Processing/1. Introduction to Natural Language Processing.srt 13KB 7. Python Crash Course/7. Python Crash Course Exercise Solutions.srt 13KB 13. Decision Trees and Random Forests/5. Random Forest Classification Consulting Project Solutions.srt 12KB 13. Decision Trees and Random Forests/1. Tree Methods Theory and Reading.srt 12KB 14. K-means Clustering/5. Clustering Consulting Project Solutions.srt 12KB 7. Python Crash Course/2. Jupyter Notebook Overview.srt 11KB 11. Linear Regression/3. Regression Evaluation.srt 11KB 16. Natural Language Processing/3. NLP Tools Part Two.srt 11KB 14. K-means Clustering/1. K-means Clustering Theory and Reading.srt 11KB 2. Setting up Python with Spark/1. Set-up Overview.srt 10KB 15. Collaborative Filtering for Recommender Systems/1. Introduction to Recommender Systems.srt 10KB 3. Local VirtualBox Set-up/3. Setting up PySpark.srt 8KB 11. Linear Regression/1. Linear Regression Theory and Reading.srt 8KB 4. AWS EC2 PySpark Set-up/3. SSH with Mac or Linux.srt 7KB 17. Spark Streaming with Python/3. Spark Streaming Twitter Project - Part.srt 7KB 9. Spark DataFrame Project Exercise/1. DataFrame Project Exercise.srt 5KB 12. Logistic Regression/4. Logistic Regression Consulting Project.srt 5KB 11. Linear Regression/5. Linear Regression Consulting Project.srt 5KB 14. K-means Clustering/4. Clustering Consulting Project.srt 5KB 1. Introduction to Course/1. Introduction.srt 4KB 4. AWS EC2 PySpark Set-up/1. AWS EC2 Set-up Guide.srt 4KB 13. Decision Trees and Random Forests/4. Random Forest - Classification Consulting Project.srt 4KB 8. Spark DataFrame Basics/1. Introduction to Spark DataFrames.srt 4KB 7. Python Crash Course/6. Python Crash Course Exercises.srt 2KB 7. Python Crash Course/1. Introduction to Python Crash Course.srt 2KB 18. Bonus/1. Bonus Lecture.html 532B 1. Introduction to Course/3. Frequently Asked Questions.html 447B 2. Setting up Python with Spark/2. Note on Installation Sections.html 347B 1. Introduction to Course/2.1 Course Overview Slides.html 161B 1. Introduction to Course/4.1 Spark and Python Slides.html 161B 10. Introduction to Machine Learning with MLlib/1.1 Slides for ML Intro.html 161B 11. Linear Regression/1.1 Slides for Linear Regression.html 161B 12. Logistic Regression/1.1 Slides for Logistic Regression.html 161B 13. Decision Trees and Random Forests/1.1 Slides for Tree Methods.html 161B 14. K-means Clustering/1.1 Slides for Clustering.html 161B 15. Collaborative Filtering for Recommender Systems/1.1 Recommender Slides.html 161B 16. Natural Language Processing/1.1 NLP Slides.html 161B 17. Spark Streaming with Python/1.1 Spark Streaming Slides.html 161B 2. Setting up Python with Spark/1.1 Slides for Installation Options Overview.html 161B 2. Setting up Python with Spark/1.2 Slides for Installation.html 161B 7. Python Crash Course/1.1 Slides for Python Crash Course.html 161B 8. Spark DataFrame Basics/1.1 Slides for Spark DataFrame Basics.html 161B 12. Logistic Regression/3.2 Great Example from Databricks.html 150B 12. Logistic Regression/3.1 Explanation of AUC.html 148B [FreeCourseWorld.Com].url 54B [DesireCourse.Net].url 51B [CourseClub.Me].url 48B