[] Udemy - Machine Learning with Imbalanced Data
- 收录时间:2021-06-13 08:35:51
- 文件大小:3GB
- 下载次数:1
- 最近下载:2021-06-13 08:35:51
- 磁力链接:
-
文件列表
- 3. Evaluation Metrics/10. Geometric Mean, Dominance, Index of Imbalanced Accuracy - Demo.mp4 87MB
- 3. Evaluation Metrics/6. Precision, Recall and F-measure - Demo.mp4 80MB
- 8. Cost Sensitive Learning/9. Bayes Conditional Risk.mp4 72MB
- 7. Ensemble Methods/8. Ensemble Methods - Demo.mp4 71MB
- 7. Ensemble Methods/5. Boosting.mp4 71MB
- 3. Evaluation Metrics/4. Precision, Recall and F-measure.mp4 67MB
- 4. Udersampling/3. Random Under-Sampling - Demo.mp4 67MB
- 9. Probability Calibration/3. Probability Calibration Curves - Demo.mp4 65MB
- 8. Cost Sensitive Learning/7. Cost Sensitive Learning with Scikit-learn- Demo.mp4 56MB
- 4. Udersampling/5. Condensed Nearest Neighbours - Demo.mp4 53MB
- 9. Probability Calibration/9. Calibrating a Classfiier after SMOTE or Under-sampling.mp4 52MB
- 3. Evaluation Metrics/8. Confusion tables, FPR and FNR - Demo.mp4 49MB
- 9. Probability Calibration/5. Brier Score - Demo.mp4 49MB
- 5. Oversampling/6. SMOTE-NC.mp4 48MB
- 3. Evaluation Metrics/3. Accuracy - Demo.mp4 48MB
- 4. Udersampling/22. Undersampling Method Comparison.mp4 48MB
- 7. Ensemble Methods/6. Boosting plus Re-Sampling.mp4 47MB
- 9. Probability Calibration/8. Calibrating a Classifier - Demo.mp4 47MB
- 5. Oversampling/10. Borderline SMOTE.mp4 46MB
- 5. Oversampling/4. SMOTE.mp4 45MB
- 8. Cost Sensitive Learning/2. Types of Cost.mp4 44MB
- 7. Ensemble Methods/4. Bagging plus Over- or Under-Sampling.mp4 43MB
- 8. Cost Sensitive Learning/10. MetaCost.mp4 43MB
- 3. Evaluation Metrics/13. Precision-Recall Curve.mp4 41MB
- 5. Oversampling/16. Over-Sampling Method Comparison.mp4 40MB
- 3. Evaluation Metrics/11. ROC-AUC.mp4 39MB
- 5. Oversampling/13. SVM SMOTE - Demo.mp4 37MB
- 8. Cost Sensitive Learning/12. Optional MetaCost Base Code.mp4 37MB
- 6. Over and Undersampling/1. Combining Over and Under-sampling - Intro.mp4 37MB
- 6. Over and Undersampling/3. Comparison of Over and Under-sampling Methods.mp4 37MB
- 5. Oversampling/3. Random Over-Sampling - Demo.mp4 35MB
- 2. Machine Learning with Imbalanced Data Overview/2. Nature of the imbalanced class.mp4 35MB
- 6. Over and Undersampling/2. Combining Over and Under-sampling - Demo.mp4 34MB
- 9. Probability Calibration/1. Probability Calibration.mp4 34MB
- 2. Machine Learning with Imbalanced Data Overview/1. Imbalanced classes - Introduction.mp4 33MB
- 8. Cost Sensitive Learning/1. Cost-sensitive Learning - Intro.mp4 33MB
- 4. Udersampling/4. Condensed Nearest Neighbours - Intro.mp4 32MB
- 1. Introduction/1. Introduction.mp4 32MB
- 5. Oversampling/8. ADASYN.mp4 32MB
- 3. Evaluation Metrics/12. ROC-AUC - Demo.mp4 32MB
- 4. Udersampling/1. Under-Sampling Methods - Introduction.mp4 31MB
- 4. Udersampling/11. Edited Nearest Neighbours - Demo.mp4 31MB
- 4. Udersampling/21. Instance Hardness Threshold - Demo.mp4 31MB
- 7. Ensemble Methods/7. Hybdrid Methods.mp4 30MB
- 3. Evaluation Metrics/7. Confusion tables, FPR and FNR.mp4 30MB
- 9. Probability Calibration/6. Under- and Over-sampling and Cost-sensitive learning on Probability Calibration.mp4 30MB
- 9. Probability Calibration/2. Probability Calibration Curves.mp4 29MB
- 5. Oversampling/14. K-Means SMOTE.mp4 28MB
- 9. Probability Calibration/7. Calibrating a Classifier.mp4 27MB
- 7. Ensemble Methods/1. Ensemble methods with Imbalanced Data.mp4 27MB
- 4. Udersampling/19. NearMiss - Demo.mp4 26MB
- 4. Udersampling/2. Random Under-Sampling - Intro.mp4 26MB
- 4. Udersampling/9. One Sided Selection - Demo.mp4 26MB
- 5. Oversampling/12. SVM SMOTE.mp4 25MB
- 9. Probability Calibration/10. Calibrating a Classifier with Cost-sensitive Learning.mp4 25MB
- 5. Oversampling/15. K-Means SMOTE - Demo.mp4 25MB
- 5. Oversampling/11. Borderline SMOTE - Demo.mp4 25MB
- 4. Udersampling/12. Repeated Edited Nearest Neighbours - Intro.mp4 24MB
- 4. Udersampling/7. Tomek Links - Demo.mp4 24MB
- 3. Evaluation Metrics/9. Geometric Mean, Dominance, Index of Imbalanced Accuracy.mp4 23MB
- 4. Udersampling/16. Neighbourhood Cleaning Rule - Intro.mp4 23MB
- 8. Cost Sensitive Learning/11. MetaCost - Demo.mp4 23MB
- 8. Cost Sensitive Learning/8. Find Optimal Cost with hyperparameter tuning.mp4 23MB
- 4. Udersampling/13. Repeated Edited Nearest Neighbours - Demo.mp4 23MB
- 4. Udersampling/15. All KNN - Demo.mp4 23MB
- 4. Udersampling/10. Edited Nearest Neighbours - Intro.mp4 23MB
- 3. Evaluation Metrics/2. Accuracy.mp4 21MB
- 5. Oversampling/7. SMOTE-NC - Demo.mp4 21MB
- 8. Cost Sensitive Learning/6. Misclassification Cost in Decision Trees.mp4 21MB
- 5. Oversampling/1. Over-Sampling Methods - Introduction.mp4 21MB
- 5. Oversampling/9. ADASYN - Demo.mp4 21MB
- 3. Evaluation Metrics/16. Probability.mp4 21MB
- 2. Machine Learning with Imbalanced Data Overview/3. Approaches to work with imbalanced datasets - Overview.mp4 20MB
- 7. Ensemble Methods/2. Foundations of Ensemble Learning.mp4 20MB
- 4. Udersampling/20. Instance Hardness Threshold - Intro.mp4 20MB
- 4. Udersampling/6. Tomek Links - Intro.mp4 19MB
- 8. Cost Sensitive Learning/3. Obtaining the Cost.mp4 19MB
- 8. Cost Sensitive Learning/5. Misclassification Cost in Logistic Regression.mp4 19MB
- 5. Oversampling/5. SMOTE - Demo.mp4 18MB
- 7. Ensemble Methods/3. Bagging.mp4 18MB
- 3. Evaluation Metrics/14. Precision-Recall Curve - Demo.mp4 18MB
- 1. Introduction/2. Course Curriculum Overview.mp4 18MB
- 4. Udersampling/18. NearMiss - Intro.mp4 17MB
- 9. Probability Calibration/4. Brier Score.mp4 17MB
- 4. Udersampling/14. All KNN - Intro.mp4 16MB
- 4. Udersampling/17. Neighbourhood Cleaning Rule - Demo.mp4 16MB
- 5. Oversampling/2. Random Over-Sampling.mp4 16MB
- 4. Udersampling/8. One Sided Selection - Intro.mp4 12MB
- 1. Introduction/3. Course Material.mp4 11MB
- 3. Evaluation Metrics/1. Introduction to Performance Metrics.mp4 11MB
- 8. Cost Sensitive Learning/4. Cost Sensitive Approaches.mp4 10MB
- 4. Udersampling/23.1 Undersampling-Comparison.pdf 206KB
- 3. Evaluation Metrics/4. Precision, Recall and F-measure.srt 15KB
- 8. Cost Sensitive Learning/9. Bayes Conditional Risk.srt 15KB
- 4. Udersampling/3. Random Under-Sampling - Demo.srt 13KB
- 3. Evaluation Metrics/10. Geometric Mean, Dominance, Index of Imbalanced Accuracy - Demo.srt 12KB
- 3. Evaluation Metrics/6. Precision, Recall and F-measure - Demo.srt 12KB
- 8. Cost Sensitive Learning/2. Types of Cost.srt 12KB
- 7. Ensemble Methods/8. Ensemble Methods - Demo.srt 12KB
- 9. Probability Calibration/3. Probability Calibration Curves - Demo.srt 12KB
- 7. Ensemble Methods/5. Boosting.srt 11KB
- 5. Oversampling/6. SMOTE-NC.srt 10KB
- 9. Probability Calibration/9. Calibrating a Classfiier after SMOTE or Under-sampling.srt 10KB
- 5. Oversampling/4. SMOTE.srt 10KB
- 3. Evaluation Metrics/8. Confusion tables, FPR and FNR - Demo.srt 10KB
- 5. Oversampling/10. Borderline SMOTE.srt 9KB
- 4. Udersampling/22. Undersampling Method Comparison.srt 9KB
- 3. Evaluation Metrics/13. Precision-Recall Curve.srt 9KB
- 4. Udersampling/5. Condensed Nearest Neighbours - Demo.srt 9KB
- 8. Cost Sensitive Learning/7. Cost Sensitive Learning with Scikit-learn- Demo.srt 9KB
- 9. Probability Calibration/5. Brier Score - Demo.srt 9KB
- 8. Cost Sensitive Learning/10. MetaCost.srt 9KB
- 3. Evaluation Metrics/11. ROC-AUC.srt 8KB
- 4. Udersampling/4. Condensed Nearest Neighbours - Intro.srt 8KB
- 7. Ensemble Methods/6. Boosting plus Re-Sampling.srt 8KB
- 8. Cost Sensitive Learning/1. Cost-sensitive Learning - Intro.srt 8KB
- 5. Oversampling/8. ADASYN.srt 8KB
- 8. Cost Sensitive Learning/12. Optional MetaCost Base Code.srt 7KB
- 3. Evaluation Metrics/7. Confusion tables, FPR and FNR.srt 7KB
- 9. Probability Calibration/1. Probability Calibration.srt 7KB
- 3. Evaluation Metrics/3. Accuracy - Demo.srt 7KB
- 9. Probability Calibration/8. Calibrating a Classifier - Demo.srt 7KB
- 6. Over and Undersampling/1. Combining Over and Under-sampling - Intro.srt 7KB
- 5. Oversampling/16. Over-Sampling Method Comparison.srt 7KB
- 9. Probability Calibration/2. Probability Calibration Curves.srt 7KB
- 4. Udersampling/2. Random Under-Sampling - Intro.srt 7KB
- 4. Udersampling/1. Under-Sampling Methods - Introduction.srt 7KB
- 6. Over and Undersampling/3. Comparison of Over and Under-sampling Methods.srt 7KB
- 2. Machine Learning with Imbalanced Data Overview/1. Imbalanced classes - Introduction.srt 6KB
- 7. Ensemble Methods/4. Bagging plus Over- or Under-Sampling.srt 6KB
- 5. Oversampling/3. Random Over-Sampling - Demo.srt 6KB
- 6. Over and Undersampling/2. Combining Over and Under-sampling - Demo.srt 6KB
- 9. Probability Calibration/6. Under- and Over-sampling and Cost-sensitive learning on Probability Calibration.srt 6KB
- 5. Oversampling/12. SVM SMOTE.srt 6KB
- 5. Oversampling/14. K-Means SMOTE.srt 6KB
- 2. Machine Learning with Imbalanced Data Overview/2. Nature of the imbalanced class.srt 6KB
- 9. Probability Calibration/7. Calibrating a Classifier.srt 6KB
- 3. Evaluation Metrics/16. Probability.srt 6KB
- 4. Udersampling/12. Repeated Edited Nearest Neighbours - Intro.srt 5KB
- 7. Ensemble Methods/1. Ensemble methods with Imbalanced Data.srt 5KB
- 4. Udersampling/10. Edited Nearest Neighbours - Intro.srt 5KB
- 3. Evaluation Metrics/12. ROC-AUC - Demo.srt 5KB
- 3. Evaluation Metrics/2. Accuracy.srt 5KB
- 7. Ensemble Methods/7. Hybdrid Methods.srt 5KB
- 4. Udersampling/6. Tomek Links - Intro.srt 5KB
- 3. Evaluation Metrics/9. Geometric Mean, Dominance, Index of Imbalanced Accuracy.srt 5KB
- 4. Udersampling/11. Edited Nearest Neighbours - Demo.srt 5KB
- 4. Udersampling/16. Neighbourhood Cleaning Rule - Intro.srt 5KB
- 4. Udersampling/20. Instance Hardness Threshold - Intro.srt 5KB
- 5. Oversampling/13. SVM SMOTE - Demo.srt 5KB
- 4. Udersampling/21. Instance Hardness Threshold - Demo.srt 5KB
- 2. Machine Learning with Imbalanced Data Overview/3. Approaches to work with imbalanced datasets - Overview.srt 5KB
- 4. Udersampling/9. One Sided Selection - Demo.srt 5KB
- 9. Probability Calibration/10. Calibrating a Classifier with Cost-sensitive Learning.srt 5KB
- 8. Cost Sensitive Learning/3. Obtaining the Cost.srt 5KB
- 4. Udersampling/19. NearMiss - Demo.srt 5KB
- 8. Cost Sensitive Learning/11. MetaCost - Demo.srt 4KB
- 4. Udersampling/18. NearMiss - Intro.srt 4KB
- 8. Cost Sensitive Learning/8. Find Optimal Cost with hyperparameter tuning.srt 4KB
- 5. Oversampling/1. Over-Sampling Methods - Introduction.srt 4KB
- 4. Udersampling/14. All KNN - Intro.srt 4KB
- 8. Cost Sensitive Learning/6. Misclassification Cost in Decision Trees.srt 4KB
- 4. Udersampling/7. Tomek Links - Demo.srt 4KB
- 1. Introduction/1. Introduction.srt 4KB
- 4. Udersampling/13. Repeated Edited Nearest Neighbours - Demo.srt 4KB
- 5. Oversampling/15. K-Means SMOTE - Demo.srt 4KB
- 1. Introduction/2. Course Curriculum Overview.srt 4KB
- 5. Oversampling/9. ADASYN - Demo.srt 4KB
- 5. Oversampling/2. Random Over-Sampling.srt 4KB
- 9. Probability Calibration/4. Brier Score.srt 4KB
- 8. Cost Sensitive Learning/5. Misclassification Cost in Logistic Regression.srt 4KB
- 5. Oversampling/11. Borderline SMOTE - Demo.srt 4KB
- 4. Udersampling/15. All KNN - Demo.srt 4KB
- 3. Evaluation Metrics/14. Precision-Recall Curve - Demo.srt 3KB
- 5. Oversampling/7. SMOTE-NC - Demo.srt 3KB
- 3. Evaluation Metrics/1. Introduction to Performance Metrics.srt 3KB
- 7. Ensemble Methods/3. Bagging.srt 3KB
- 7. Ensemble Methods/2. Foundations of Ensemble Learning.srt 3KB
- 5. Oversampling/5. SMOTE - Demo.srt 3KB
- 4. Udersampling/8. One Sided Selection - Intro.srt 3KB
- 4. Udersampling/17. Neighbourhood Cleaning Rule - Demo.srt 3KB
- 1. Introduction/8. Additional resources for Machine Learning and Python programming.html 3KB
- 1. Introduction/3. Course Material.srt 2KB
- 7. Ensemble Methods/9. Additional Reading Resources.html 2KB
- 8. Cost Sensitive Learning/13. Additional Reading Resources.html 2KB
- 8. Cost Sensitive Learning/4. Cost Sensitive Approaches.srt 2KB
- 3. Evaluation Metrics/15. Additional reading resources (Optional).html 2KB
- 2. Machine Learning with Imbalanced Data Overview/4. Additional Reading Resources (Optional).html 1KB
- 1. Introduction/4. Code Jupyter notebooks.html 962B
- 9. Probability Calibration/11. Probability Additional reading resources.html 931B
- 10. Moving Forward/1. Next steps.html 712B
- 1. Introduction/6. Python package Imbalanced-learn.html 699B
- 3. Evaluation Metrics/5. Install Yellowbrick.html 684B
- 1. Introduction/7. Download Datasets.html 354B
- 1. Introduction/5. Presentations covered in the course.html 286B
- 3. Evaluation Metrics/16.1 Link to Jupyter notebook.html 177B
- 4. Udersampling/23. Summary Table.html 140B
- 0. Websites you may like/[FCS Forum].url 133B
- 0. Websites you may like/[FreeCourseSite.com].url 127B
- 0. Websites you may like/[CourseClub.ME].url 122B