[] - Tensorflow Tutorial Hands-on AI development with Tensorflow
- 收录时间:2022-04-05 16:28:26
- 文件大小:4GB
- 下载次数:1
- 最近下载:2022-04-05 16:28:26
- 磁力链接:
-
文件列表
- 6. Live Projects/3. Cats vs Dogs.mp4 290MB
- 6. Live Projects/1. Fashion Clothing Recognition.mp4 157MB
- 5. Section 5/8. Facial Recognition using PCA.mp4 149MB
- 3. Section 3/4. Backpropagation.mp4 147MB
- 3. Section 3/6. Digit Classification.mp4 144MB
- 2. Section 2/3. Linear Regression - Theory.mp4 144MB
- 2. Section 2/1. Decision Trees - Theory.mp4 139MB
- 4. Section 4/2. Convolution in CNN (part1).mp4 137MB
- 4. Section 4/3. Convolution in CNN (part2).mp4 132MB
- 2. Section 2/6. Logistic Regression - Implementation.mp4 117MB
- 4. Section 4/4. Layers of CNN.mp4 114MB
- 1. Section 1/6. Intro to Machine Learning.mp4 112MB
- 1. Section 1/3. Graphs.mp4 112MB
- 3. Section 3/3. Complex Decision Boundaries.mp4 112MB
- 5. Section 5/7. Principal Component Analysis.mp4 110MB
- 4. Section 4/1. Introduction.mp4 109MB
- 2. Section 2/5. Logistic Regression - Theory.mp4 108MB
- 3. Section 3/2. Gates and Forward Propagation.mp4 104MB
- 2. Section 2/4. Linear Regression - Implementation.mp4 104MB
- 5. Section 5/2. K-Means Algorithm (Part 2).mp4 103MB
- 3. Section 3/1. Introduction.mp4 100MB
- 5. Section 5/1. K-Means Algorithm (Part 1).mp4 100MB
- 4. Section 4/6. Famous CNN Architectures.mp4 96MB
- 4. Section 4/5. Digit Classification.mp4 94MB
- 5. Section 5/4. K-Means ++.mp4 90MB
- 1. Section 1/1. What is TensorFlow 2 Preview.mp4 87MB
- 6. Live Projects/2. CIFAR 10 and CNN.mp4 84MB
- 6. Live Projects/4. Action Recognition.mp4 82MB
- 1. Section 1/4. Automatic Differentiation.mp4 78MB
- 2. Section 2/7. Overfitting and Regularization.mp4 76MB
- 1. Section 1/2. Basics of TensorFlow.mp4 74MB
- 1. Section 1/5. Keras and TensorFlow.mp4 67MB
- 5. Section 5/3. Centroid Initialization.mp4 66MB
- 3. Section 3/5. Gradient Descent Type and Softmax.mp4 63MB
- 2. Section 2/2. Decision Trees - Implementation.mp4 61MB
- 5. Section 5/6. K-Means Implementation.mp4 51MB
- 2. Section 2/8. Model Evaluation - Theory.mp4 46MB
- 2. Section 2/9. Model Evaluation - Implementation.mp4 33MB
- 5. Section 5/5. Number of Clusters.mp4 32MB
- 1. Section 1/7. Types of Supervised Learning.mp4 28MB
- 6. Live Projects/3. Cats vs Dogs.srt 40KB
- 6. Live Projects/1. Fashion Clothing Recognition.srt 22KB
- 3. Section 3/6. Digit Classification.srt 21KB
- 3. Section 3/4. Backpropagation.srt 21KB
- 5. Section 5/8. Facial Recognition using PCA.srt 19KB
- 2. Section 2/6. Logistic Regression - Implementation.srt 18KB
- 2. Section 2/3. Linear Regression - Theory.srt 17KB
- 2. Section 2/4. Linear Regression - Implementation.srt 17KB
- 4. Section 4/2. Convolution in CNN (part1).srt 17KB
- 2. Section 2/1. Decision Trees - Theory.srt 15KB
- 4. Section 4/3. Convolution in CNN (part2).srt 15KB
- 1. Section 1/3. Graphs.srt 15KB
- 5. Section 5/1. K-Means Algorithm (Part 1).srt 14KB
- 3. Section 3/3. Complex Decision Boundaries.srt 14KB
- 4. Section 4/4. Layers of CNN.srt 13KB
- 5. Section 5/2. K-Means Algorithm (Part 2).srt 13KB
- 6. Live Projects/2. CIFAR 10 and CNN.srt 13KB
- 5. Section 5/4. K-Means ++.srt 13KB
- 5. Section 5/7. Principal Component Analysis.srt 13KB
- 1. Section 1/1. What is TensorFlow 2 Preview.srt 13KB
- 4. Section 4/6. Famous CNN Architectures.srt 12KB
- 3. Section 3/1. Introduction.srt 12KB
- 3. Section 3/2. Gates and Forward Propagation.srt 12KB
- 4. Section 4/5. Digit Classification.srt 12KB
- 1. Section 1/6. Intro to Machine Learning.srt 12KB
- 2. Section 2/5. Logistic Regression - Theory.srt 12KB
- 1. Section 1/2. Basics of TensorFlow.srt 12KB
- 4. Section 4/1. Introduction.srt 12KB
- 1. Section 1/4. Automatic Differentiation.srt 11KB
- 6. Live Projects/4. Action Recognition.srt 10KB
- 2. Section 2/2. Decision Trees - Implementation.srt 10KB
- 2. Section 2/7. Overfitting and Regularization.srt 9KB
- 5. Section 5/3. Centroid Initialization.srt 9KB
- 1. Section 1/5. Keras and TensorFlow.srt 8KB
- 3. Section 3/5. Gradient Descent Type and Softmax.srt 8KB
- 5. Section 5/6. K-Means Implementation.srt 7KB
- 2. Section 2/8. Model Evaluation - Theory.srt 5KB
- 5. Section 5/5. Number of Clusters.srt 5KB
- 2. Section 2/9. Model Evaluation - Implementation.srt 4KB
- 1. Section 1/7. Types of Supervised Learning.srt 4KB
- READ_ME.txt 503B
- 1. Section 1/READ_ME.txt 503B
- 1. Section 1/CourseRecap-Click For More Courses!!.url 50B
- CourseRecap-Click For More Courses!!.url 50B