[] Udemy - Hyperparameter Optimization for Machine Learning 收录时间:2021-10-19 02:23:59 文件大小:3GB 下载次数:1 最近下载:2021-10-19 02:23:59 磁力链接: magnet:?xt=urn:btih:e1270bf9943f5d333659c423e34e2f74f04c1046 立即下载 复制链接 文件列表 06 Bayesian Optimization/006 Sequential Model-Based Optimization.mp4 114MB 08 Scikit-Optimize/014 Optimizing parameters of a CNN.mp4 111MB 06 Bayesian Optimization/017 Scikit-Optimize - Neuronal Networks.mp4 111MB 07 Other SMBO Algorithms/002 SMAC Demo.mp4 100MB 06 Bayesian Optimization/013 Scikit-Optimize - 1-Dimension.mp4 97MB 06 Bayesian Optimization/008 Multivariate Gaussian Distribution.mp4 84MB 06 Bayesian Optimization/011 Acquisition Functions.mp4 82MB 05 Basic Search Algorithms/009 Random Search with Hyperopt.mp4 81MB 04 Cross-Validation/003 Cross-Validation Schemes.mp4 80MB 06 Bayesian Optimization/009 Gaussian Process.mp4 76MB 06 Bayesian Optimization/005 Bayes Rule.mp4 68MB 04 Cross-Validation/004 Cross-Validation for model error estimation - Demo.mp4 66MB 03 Performance metrics/005 Creating your Own Metrics.mp4 64MB 02 Hyperparameter Tuning - Overview/001 Parameters and Hyperparameters.mp4 62MB 01 Introduction/001 Introduction.mp4 62MB 05 Basic Search Algorithms/004 Grid Search - Demo.mp4 59MB 04 Cross-Validation/001 Cross-Validation.mp4 58MB 04 Cross-Validation/005 Cross-Validation for Hyperparameter Tuning - Demo.mp4 57MB 04 Cross-Validation/009 Nested Cross-Validation - Demo.mp4 55MB 02 Hyperparameter Tuning - Overview/002 Hyperparameter Optimization.mp4 51MB 07 Other SMBO Algorithms/007 TPE with Hyperopt.mp4 50MB 04 Cross-Validation/008 Nested Cross-Validation.mp4 50MB 05 Basic Search Algorithms/008 Random Search with Scikit-Optimize.mp4 48MB 06 Bayesian Optimization/004 Joint and Conditional Probabilities.mp4 46MB 03 Performance metrics/004 Scikit-learn Metrics.mp4 46MB 05 Basic Search Algorithms/007 Random Search - Scikit-learn.mp4 44MB 06 Bayesian Optimization/003 Bayesian Inference - Introduction.mp4 43MB 04 Cross-Validation/007 Group Cross-Validation - Demo.mp4 43MB 05 Basic Search Algorithms/002 Manual Search.mp4 43MB 03 Performance metrics/002 Classification Metrics (Optional).mp4 43MB 07 Other SMBO Algorithms/004 TPE Procedure.mp4 42MB 05 Basic Search Algorithms/006 Random Search.mp4 41MB 04 Cross-Validation/006 Special Cross-Validation Schemes.mp4 41MB 08 Scikit-Optimize/006 Random search.mp4 38MB 08 Scikit-Optimize/015 Analyzing the CNN search.mp4 37MB 06 Bayesian Optimization/018 Scikit-Optimize - CNN - Search Analysis.mp4 37MB 06 Bayesian Optimization/014 Scikit-Optimize - Manual Search.mp4 36MB 08 Scikit-Optimize/007 Bayesian search with Gaussian processes.mp4 35MB 01 Introduction/002 Course Curriculum.mp4 35MB 06 Bayesian Optimization/007 Gaussian Distribution.mp4 35MB 07 Other SMBO Algorithms/001 SMAC.mp4 33MB 06 Bayesian Optimization/015 Scikit-Optimize - Automatic Search.mp4 31MB 08 Scikit-Optimize/011 Bayesian search with Scikit-learn wrapper.mp4 31MB 06 Bayesian Optimization/001 Sequential Search.mp4 31MB 06 Bayesian Optimization/010 Kernels.mp4 30MB 08 Scikit-Optimize/010 Parallelizing a bayesian search.mp4 26MB 07 Other SMBO Algorithms/006 TPE - why tree-structured_.mp4 26MB 05 Basic Search Algorithms/001 Basic Search Algorithms - Introduction.mp4 25MB 08 Scikit-Optimize/012 Changing the kernel of a Gaussian Process.mp4 25MB 06 Bayesian Optimization/016 Scikit-Optimize - Alternative Kernel.mp4 25MB 08 Scikit-Optimize/001 Scikit-Optimize.mp4 25MB 08 Scikit-Optimize/003 Hyperparameter Distributions.mp4 24MB 07 Other SMBO Algorithms/005 TPE hyperparameters.mp4 23MB 08 Scikit-Optimize/009 Bayes search with GBMs.mp4 23MB 08 Scikit-Optimize/008 Bayes search with Random Forests.mp4 23MB 06 Bayesian Optimization/002 Bayesian Optimization.mp4 22MB 07 Other SMBO Algorithms/003 Tree-structured Parzen Estimators - TPE.mp4 19MB 05 Basic Search Algorithms/005 Grid Search with different hyperparameter spaces.mp4 18MB 03 Performance metrics/006 Using Scikit-learn Metrics.mp4 18MB 08 Scikit-Optimize/004 Defining the hyperparameter space.mp4 17MB 03 Performance metrics/003 Regression Metrics (Optional).mp4 17MB 05 Basic Search Algorithms/003 Grid Search.mp4 16MB 01 Introduction/003 Course aim and knowledge requirements.mp4 16MB 08 Scikit-Optimize/002 Section Content.mp4 12MB 08 Scikit-Optimize/005 Defining the objective function.mp4 11MB 01 Introduction/004 Course Material.mp4 10MB 03 Performance metrics/001 Introduction.mp4 6MB 06 Bayesian Optimization/006 Sequential Model-Based Optimization.en.srt 20KB 06 Bayesian Optimization/008 Multivariate Gaussian Distribution.en.srt 19KB 06 Bayesian Optimization/013 Scikit-Optimize - 1-Dimension.en.srt 19KB 06 Bayesian Optimization/017 Scikit-Optimize - Neuronal Networks.en.srt 18KB 08 Scikit-Optimize/014 Optimizing parameters of a CNN.en.srt 18KB 04 Cross-Validation/003 Cross-Validation Schemes.en.srt 17KB 06 Bayesian Optimization/009 Gaussian Process.en.srt 16KB 06 Bayesian Optimization/011 Acquisition Functions.en.srt 16KB 06 Bayesian Optimization/005 Bayes Rule.en.srt 14KB 07 Other SMBO Algorithms/002 SMAC Demo.en.srt 14KB 02 Hyperparameter Tuning - Overview/001 Parameters and Hyperparameters.en.srt 14KB 05 Basic Search Algorithms/009 Random Search with Hyperopt.en.srt 13KB 04 Cross-Validation/001 Cross-Validation.en.srt 11KB 03 Performance metrics/005 Creating your Own Metrics.en.srt 11KB 02 Hyperparameter Tuning - Overview/002 Hyperparameter Optimization.en.srt 11KB 04 Cross-Validation/004 Cross-Validation for model error estimation - Demo.en.srt 11KB 05 Basic Search Algorithms/004 Grid Search - Demo.en.srt 10KB 04 Cross-Validation/005 Cross-Validation for Hyperparameter Tuning - Demo.en.srt 10KB 05 Basic Search Algorithms/008 Random Search with Scikit-Optimize.en.srt 10KB 03 Performance metrics/002 Classification Metrics (Optional).en.srt 10KB 05 Basic Search Algorithms/006 Random Search.en.srt 10KB 07 Other SMBO Algorithms/004 TPE Procedure.en.srt 9KB 06 Bayesian Optimization/003 Bayesian Inference - Introduction.en.srt 9KB 05 Basic Search Algorithms/002 Manual Search.en.srt 9KB 06 Bayesian Optimization/004 Joint and Conditional Probabilities.en.srt 9KB 04 Cross-Validation/008 Nested Cross-Validation.en.srt 9KB 06 Bayesian Optimization/007 Gaussian Distribution.en.srt 9KB 04 Cross-Validation/006 Special Cross-Validation Schemes.en.srt 9KB 04 Cross-Validation/009 Nested Cross-Validation - Demo.en.srt 9KB 03 Performance metrics/004 Scikit-learn Metrics.en.srt 8KB 06 Bayesian Optimization/018 Scikit-Optimize - CNN - Search Analysis.en.srt 8KB 08 Scikit-Optimize/015 Analyzing the CNN search.en.srt 8KB 01 Introduction/002 Course Curriculum.en.srt 8KB 06 Bayesian Optimization/010 Kernels.en.srt 8KB 07 Other SMBO Algorithms/007 TPE with Hyperopt.en.srt 8KB 07 Other SMBO Algorithms/001 SMAC.en.srt 7KB 06 Bayesian Optimization/014 Scikit-Optimize - Manual Search.en.srt 7KB 06 Bayesian Optimization/001 Sequential Search.en.srt 7KB 08 Scikit-Optimize/001 Scikit-Optimize.en.srt 7KB 05 Basic Search Algorithms/007 Random Search - Scikit-learn.en.srt 7KB 08 Scikit-Optimize/007 Bayesian search with Gaussian processes.en.srt 7KB 05 Basic Search Algorithms/001 Basic Search Algorithms - Introduction.en.srt 7KB 08 Scikit-Optimize/006 Random search.en.srt 6KB 04 Cross-Validation/007 Group Cross-Validation - Demo.en.srt 6KB 06 Bayesian Optimization/002 Bayesian Optimization.en.srt 6KB 06 Bayesian Optimization/015 Scikit-Optimize - Automatic Search.en.srt 5KB 08 Scikit-Optimize/011 Bayesian search with Scikit-learn wrapper.en.srt 5KB 07 Other SMBO Algorithms/005 TPE hyperparameters.en.srt 5KB 08 Scikit-Optimize/003 Hyperparameter Distributions.en.srt 5KB 07 Other SMBO Algorithms/006 TPE - why tree-structured_.en.srt 5KB 06 Bayesian Optimization/016 Scikit-Optimize - Alternative Kernel.en.srt 5KB 08 Scikit-Optimize/012 Changing the kernel of a Gaussian Process.en.srt 5KB 05 Basic Search Algorithms/003 Grid Search.en.srt 4KB 01 Introduction/001 Introduction.en.srt 4KB 07 Other SMBO Algorithms/003 Tree-structured Parzen Estimators - TPE.en.srt 4KB 03 Performance metrics/003 Regression Metrics (Optional).en.srt 4KB 01 Introduction/009 FAQ.html 4KB 08 Scikit-Optimize/008 Bayes search with Random Forests.en.srt 4KB 08 Scikit-Optimize/009 Bayes search with GBMs.en.srt 4KB 08 Scikit-Optimize/010 Parallelizing a bayesian search.en.srt 3KB 08 Scikit-Optimize/004 Defining the hyperparameter space.en.srt 3KB 01 Introduction/003 Course aim and knowledge requirements.en.srt 3KB 05 Basic Search Algorithms/005 Grid Search with different hyperparameter spaces.en.srt 3KB 08 Scikit-Optimize/002 Section Content.en.srt 3KB 08 Scikit-Optimize/005 Defining the objective function.en.srt 3KB 03 Performance metrics/006 Using Scikit-learn Metrics.en.srt 2KB 01 Introduction/004 Course Material.en.srt 2KB 06 Bayesian Optimization/012 Additional Reading Resources.html 2KB 01 Introduction/005 Jupyter notebooks.html 2KB 01 Introduction/008 Set up your computer - required packages.html 2KB 09 Moving Forward/001 What's next_.html 2KB 03 Performance metrics/001 Introduction.en.srt 1KB 01 Introduction/007 Datasets.html 1KB 08 Scikit-Optimize/013 Optimizing xgboost.html 1KB 01 Introduction/006 Presentations.html 1KB 04 Cross-Validation/002 Bias vs Variance (Optional).html 1KB 0. Websites you may like/[FCS Forum].url 133B 0. Websites you may like/[FreeCourseSite.com].url 127B 0. Websites you may like/[CourseClub.ME].url 122B