[] Udemy - Python for Data Science & Machine Learning from A-Z 收录时间:2021-10-17 12:16:58 文件大小:7GB 下载次数:1 最近下载:2021-10-17 12:16:57 磁力链接: magnet:?xt=urn:btih:e4166dcf5ce4a8c75a656340d075dd43323182f1 立即下载 复制链接 文件列表 19. PCA/7. PCA - Image Compression.mp4 250MB 16. Ensemble Learning and Random Forests/6. Implementing Random Forests from scratch Part 1.mp4 203MB 15. Decision Trees/7. ID3 - Putting Everything Together.mp4 182MB 14. K Nearest Neighbors/3. EDA on Iris Dataset.mp4 162MB 15. Decision Trees/3. What is Entropy and Information Gain.mp4 136MB 19. PCA/9. PCA - Biplot and the Screen Plot.mp4 136MB 1. Introduction/6. How To Get a Data Science Job.mp4 131MB 1. Introduction/5. What is a Data Scientist.mp4 127MB 17. Support Vector Machines/6. SVM - Kernel Types.mp4 126MB 15. Decision Trees/2. EDA on Adult Dataset.mp4 123MB 15. Decision Trees/8. Evaluating our ID3 implementation.mp4 122MB 19. PCA/8. PCA Data Preprocessing.mp4 120MB 15. Decision Trees/13. Pruning.mp4 113MB 17. Support Vector Machines/8. SVM with Non-linear Dataset.mp4 112MB 13. Linear and Logistic Regression/3. Linear Regression + Correlation Methods.mp4 110MB 18. K-means/3. Representing Clusters.mp4 110MB 3. Python For Data Science/15. Python Dictionaries.mp4 104MB 17. Support Vector Machines/7. SVM with Linear Dataset (Iris).mp4 102MB 18. K-means/1. Unsupervised Machine Learning Intro.mp4 101MB 9. Machine Learning/1. Introduction To Machine Learning.mp4 99MB 16. Ensemble Learning and Random Forests/2. What is Ensemble Learning.mp4 92MB 14. K Nearest Neighbors/7. Hyperparameter tuning using the cross-validation.mp4 90MB 2. Data Science & Machine Learning Concepts/2. What is Data Science.mp4 88MB 14. K Nearest Neighbors/5. Implement the KNN algorithm from scratch.mp4 87MB 3. Python For Data Science/7. Python Operators.mp4 87MB 16. Ensemble Learning and Random Forests/13. AdaBoost Part 2.mp4 86MB 15. Decision Trees/4. The Decision Tree ID3 algorithm from scratch Part 1.mp4 85MB 2. Data Science & Machine Learning Concepts/3. What is Machine Learning.mp4 83MB 18. K-means/2. Unsupervised Machine Learning Continued.mp4 83MB 15. Decision Trees/12. Decision Trees Hyper-parameters.mp4 81MB 1. Introduction/4. Data Science Job Roles.mp4 80MB 1. Introduction/7. Data Science Projects Overview.mp4 79MB 2. Data Science & Machine Learning Concepts/4. Machine Learning Concepts & Algorithms.mp4 78MB 2. Data Science & Machine Learning Concepts/5. What is Deep Learning.mp4 78MB 17. Support Vector Machines/5. Kernel Trick.mp4 77MB 2. Data Science & Machine Learning Concepts/6. Machine Learning vs Deep Learning.mp4 76MB 8. Python Data Visualization/1. Data Visualization Overview.mp4 73MB 7. Pandas Data Analysis/2. Introduction to Pandas Continued.mp4 71MB 3. Python For Data Science/19. Object Oriented Programming in Python.mp4 70MB 19. PCA/10. PCA - Feature Scaling and Screen Plot.mp4 68MB 15. Decision Trees/10. Visualizing the tree.mp4 68MB 19. PCA/12. PCA - Visualization.mp4 68MB 17. Support Vector Machines/3. Hard vs Soft Margins.mp4 66MB 15. Decision Trees/9. Compare with Sklearn implementation.mp4 66MB 15. Decision Trees/5. The Decision Tree ID3 algorithm from scratch Part 2.mp4 64MB 3. Python For Data Science/18. Python Functions.mp4 63MB 5. Probability & Hypothesis Testing/4. Hypothesis Testing Overview.mp4 61MB 3. Python For Data Science/13. More about Lists.mp4 60MB 19. PCA/4. PCA Algorithm Steps (Mathematics).mp4 58MB 3. Python For Data Science/9. Python Strings.mp4 56MB 16. Ensemble Learning and Random Forests/3. What is Bootstrap Sampling.mp4 56MB 3. Python For Data Science/10. Python Conditional Statements.mp4 55MB 3. Python For Data Science/14. Python Tuples.mp4 55MB 10. Data Loading & Exploration/1. Exploratory Data Analysis.mp4 51MB 16. Ensemble Learning and Random Forests/7. Implementing Random Forests from scratch Part 2.mp4 51MB 14. K Nearest Neighbors/10. Feature scaling in KNN.mp4 49MB 17. Support Vector Machines/2. SVM intuition.mp4 49MB 15. Decision Trees/15. Decision Trees Pros and Cons.mp4 48MB 19. PCA/2. What is PCA.mp4 47MB 3. Python For Data Science/17. Compound Data Types & When to use each one.mp4 47MB 1. Introduction/2. Data Science + Machine Learning Marketplace.mp4 47MB 7. Pandas Data Analysis/1. Introduction to Pandas.mp4 47MB 14. K Nearest Neighbors/11. Curse of dimensionality.mp4 46MB 4. Statistics for Data Science/6. Inferential Statistics.mp4 45MB 16. Ensemble Learning and Random Forests/5. Out-of-Bag Error (OOB Error).mp4 42MB 6. NumPy Data Analysis/3. NumPy Arrays Basics.mp4 40MB 16. Ensemble Learning and Random Forests/9. Random Forests Hyper-Parameters.mp4 40MB 17. Support Vector Machines/10. SMV - Project Overview.mp4 40MB 19. PCA/5. Covariance Matrix vs SVD.mp4 39MB 3. Python For Data Science/5. Python Variables, Booleans and None.mp4 38MB 4. Statistics for Data Science/3. Measure of Variability.mp4 38MB 20. Data Science Career/1. Creating A Data Science Resume.mp4 37MB 19. PCA/11. PCA - Supervised vs Unsupervised.mp4 36MB 16. Ensemble Learning and Random Forests/11. What is Boosting.mp4 35MB 17. Support Vector Machines/1. SVM Outline.mp4 35MB 3. Python For Data Science/6. Getting Started with Google Colab.mp4 35MB 6. NumPy Data Analysis/4. NumPy Array Indexing.mp4 35MB 6. NumPy Data Analysis/1. Intro NumPy Array Data Types.mp4 35MB 4. Statistics for Data Science/4. Measure of Variability Continued.mp4 35MB 15. Decision Trees/6. The Decision Tree ID3 algorithm from scratch Part 3.mp4 33MB 5. Probability & Hypothesis Testing/3. Relative Frequency.mp4 33MB 6. NumPy Data Analysis/2. NumPy Arrays.mp4 32MB 19. PCA/1. PCA Section Overview.mp4 32MB 15. Decision Trees/11. Plot the features importance.mp4 32MB 13. Linear and Logistic Regression/1. Linear Regression Intro.mp4 31MB 20. Data Science Career/6. Personal Branding.mp4 30MB 14. K Nearest Neighbors/9. Manhattan vs Euclidean Distance.mp4 30MB 14. K Nearest Neighbors/13. KNN pros and cons.mp4 30MB 20. Data Science Career/4. Getting Started with Freelancing.mp4 30MB 11. Data Cleaning/2. Data Cleaning.mp4 30MB 20. Data Science Career/5. Top Freelance Websites.mp4 30MB 16. Ensemble Learning and Random Forests/4. What is Bagging.mp4 29MB 3. Python For Data Science/16. Python Sets.mp4 29MB 1. Introduction/3. Data Science Job Opportunities.mp4 29MB 14. K Nearest Neighbors/12. KNN use cases.mp4 29MB 16. Ensemble Learning and Random Forests/8. Compare with sklearn implementation.mp4 28MB 8. Python Data Visualization/3. Python Data Visualization Implementation.mp4 27MB 5. Probability & Hypothesis Testing/1. What is Exactly is Probability.mp4 27MB 4. Statistics for Data Science/8. Sampling Distribution.mp4 26MB 3. Python For Data Science/8. Python Numbers & Booleans.mp4 26MB 3. Python For Data Science/11. Python For Loops and While Loops.mp4 26MB 16. Ensemble Learning and Random Forests/12. AdaBoost Part 1.mp4 26MB 17. Support Vector Machines/9. SVM with Regression.mp4 25MB 20. Data Science Career/3. How to Contact Recruiters.mp4 25MB 14. K Nearest Neighbors/6. Compare the result with the sklearn library.mp4 25MB 20. Data Science Career/7. Networking Do's and Don'ts.mp4 24MB 4. Statistics for Data Science/5. Measures of Variable Relationship.mp4 24MB 20. Data Science Career/2. Data Science Cover Letter.mp4 23MB 4. Statistics for Data Science/2. Descriptive Statistics.mp4 21MB 3. Python For Data Science/12. Python Lists.mp4 21MB 4. Statistics for Data Science/1. Intro To Statistics.mp4 21MB 17. Support Vector Machines/4. C hyper-parameter.mp4 21MB 16. Ensemble Learning and Random Forests/10. Random Forests Pros and Cons.mp4 20MB 19. PCA/3. PCA Drawbacks.mp4 19MB 11. Data Cleaning/1. Feature Scaling.mp4 19MB 15. Decision Trees/14. [Optional] Gain Ration.mp4 19MB 12. Feature Selecting and Engineering/1. Feature Engineering.mp4 18MB 3. Python For Data Science/1. What is Programming.mp4 18MB 6. NumPy Data Analysis/6. Broadcasting.mp4 18MB 13. Linear and Logistic Regression/4. Linear Regression Implementation.mp4 18MB 1. Introduction/1. Who is This Course For.mp4 17MB 6. NumPy Data Analysis/5. NumPy Array Computations.mp4 17MB 14. K Nearest Neighbors/8. The decision boundary visualization.mp4 17MB 15. Decision Trees/1. Decision Trees Section Overview.mp4 16MB 3. Python For Data Science/2. Why Python for Data Science.mp4 16MB 16. Ensemble Learning and Random Forests/1. Ensemble Learning Section Overview.mp4 16MB 8. Python Data Visualization/2. Different Data Visualization Libraries in Python.mp4 16MB 13. Linear and Logistic Regression/2. Gradient Descent.mp4 16MB 14. K Nearest Neighbors/2. parametric vs non-parametric models.mp4 16MB 20. Data Science Career/8. Importance of a Website.mp4 15MB 15. Decision Trees/16. [Project] Predict whether income exceeds $50Kyr - Overview.mp4 15MB 5. Probability & Hypothesis Testing/2. Expected Values.mp4 15MB 3. Python For Data Science/3. What is Jupyter.mp4 15MB 2. Data Science & Machine Learning Concepts/1. Why We Use Python.mp4 14MB 14. K Nearest Neighbors/1. KNN Overview.mp4 13MB 19. PCA/6. PCA - Main Applications.mp4 10MB 13. Linear and Logistic Regression/5. Logistic Regression.mp4 9MB 3. Python For Data Science/4. What is Google Colab.mp4 8MB 14. K Nearest Neighbors/4. The KNN Intuition.mp4 8MB 4. Statistics for Data Science/7. Measure of Asymmetry.mp4 7MB 9. Machine Learning/1.1 Supervised Learning.pdf 837KB 18. K-means/1.1 Unsupervised Learning.pdf 637KB 3. Python For Data Science/3.1 Jupyter Notebook.pdf 307KB 3. Python For Data Science/2.2 Python Basics.pdf 128KB 7. Pandas Data Analysis/1.1 Pandas.pdf 110KB 6. NumPy Data Analysis/1.1 NumPy Basics.pdf 77KB 7. Pandas Data Analysis/1.2 Pandas Basics.pdf 77KB 3. Python For Data Science/2.1 Importing Python Data.pdf 62KB 19. PCA/7. PCA - Image Compression.srt 39KB 13. Linear and Logistic Regression/3. Linear Regression + Correlation Methods.srt 39KB 9. Machine Learning/1. Introduction To Machine Learning.srt 37KB 8. Python Data Visualization/1. Data Visualization Overview.srt 37KB 14. K Nearest Neighbors/3. EDA on Iris Dataset.srt 32KB 3. Python For Data Science/7. Python Operators.srt 31KB 15. Decision Trees/7. ID3 - Putting Everything Together.srt 31KB 1. Introduction/6. How To Get a Data Science Job.srt 31KB 16. Ensemble Learning and Random Forests/6. Implementing Random Forests from scratch Part 1.srt 30KB 18. K-means/1. Unsupervised Machine Learning Intro.srt 29KB 15. Decision Trees/3. What is Entropy and Information Gain.srt 29KB 18. K-means/2. Unsupervised Machine Learning Continued.srt 29KB 18. K-means/3. Representing Clusters.srt 28KB 3. Python For Data Science/15. Python Dictionaries.srt 28KB 1. Introduction/5. What is a Data Scientist.srt 27KB 7. Pandas Data Analysis/2. Introduction to Pandas Continued.srt 27KB 17. Support Vector Machines/6. SVM - Kernel Types.srt 27KB 19. PCA/9. PCA - Biplot and the Screen Plot.srt 26KB 3. Python For Data Science/19. Object Oriented Programming in Python.srt 26KB 15. Decision Trees/8. Evaluating our ID3 implementation.srt 25KB 15. Decision Trees/13. Pruning.srt 24KB 15. Decision Trees/2. EDA on Adult Dataset.srt 24KB 2. Data Science & Machine Learning Concepts/4. Machine Learning Concepts & Algorithms.srt 24KB 2. Data Science & Machine Learning Concepts/3. What is Machine Learning.srt 23KB 7. Pandas Data Analysis/1. Introduction to Pandas.srt 22KB 4. Statistics for Data Science/6. Inferential Statistics.srt 22KB 2. Data Science & Machine Learning Concepts/2. What is Data Science.srt 21KB 19. PCA/8. PCA Data Preprocessing.srt 21KB 16. Ensemble Learning and Random Forests/13. AdaBoost Part 2.srt 21KB 3. Python For Data Science/18. Python Functions.srt 21KB 17. Support Vector Machines/7. SVM with Linear Dataset (Iris).srt 20KB 3. Python For Data Science/13. More about Lists.srt 19KB 1. Introduction/7. Data Science Projects Overview.srt 19KB 10. Data Loading & Exploration/1. Exploratory Data Analysis.srt 19KB 17. Support Vector Machines/3. Hard vs Soft Margins.srt 19KB 19. PCA/4. PCA Algorithm Steps (Mathematics).srt 19KB 17. Support Vector Machines/8. SVM with Non-linear Dataset.srt 18KB 6. NumPy Data Analysis/1. Intro NumPy Array Data Types.srt 18KB 4. Statistics for Data Science/3. Measure of Variability.srt 18KB 17. Support Vector Machines/5. Kernel Trick.srt 18KB 3. Python For Data Science/10. Python Conditional Statements.srt 18KB 3. Python For Data Science/17. Compound Data Types & When to use each one.srt 18KB 2. Data Science & Machine Learning Concepts/6. Machine Learning vs Deep Learning.srt 18KB 16. Ensemble Learning and Random Forests/2. What is Ensemble Learning.srt 17KB 14. K Nearest Neighbors/5. Implement the KNN algorithm from scratch.srt 17KB 6. NumPy Data Analysis/3. NumPy Arrays Basics.srt 17KB 3. Python For Data Science/9. Python Strings.srt 16KB 15. Decision Trees/12. Decision Trees Hyper-parameters.srt 16KB 17. Support Vector Machines/2. SVM intuition.srt 16KB 2. Data Science & Machine Learning Concepts/5. What is Deep Learning.srt 16KB 1. Introduction/4. Data Science Job Roles.srt 16KB 3. Python For Data Science/5. Python Variables, Booleans and None.srt 15KB 15. Decision Trees/10. Visualizing the tree.srt 15KB 3. Python For Data Science/14. Python Tuples.srt 15KB 15. Decision Trees/4. The Decision Tree ID3 algorithm from scratch Part 1.srt 15KB 14. K Nearest Neighbors/7. Hyperparameter tuning using the cross-validation.srt 15KB 19. PCA/2. What is PCA.srt 15KB 5. Probability & Hypothesis Testing/4. Hypothesis Testing Overview.srt 15KB 19. PCA/10. PCA - Feature Scaling and Screen Plot.srt 14KB 6. NumPy Data Analysis/4. NumPy Array Indexing.srt 14KB 3. Python For Data Science/16. Python Sets.srt 13KB 4. Statistics for Data Science/4. Measure of Variability Continued.srt 13KB 8. Python Data Visualization/3. Python Data Visualization Implementation.srt 12KB 3. Python For Data Science/6. Getting Started with Google Colab.srt 12KB 15. Decision Trees/9. Compare with Sklearn implementation.srt 12KB 13. Linear and Logistic Regression/1. Linear Regression Intro.srt 12KB 11. Data Cleaning/1. Feature Scaling.srt 12KB 11. Data Cleaning/2. Data Cleaning.srt 12KB 4. Statistics for Data Science/1. Intro To Statistics.srt 11KB 16. Ensemble Learning and Random Forests/3. What is Bootstrap Sampling.srt 11KB 6. NumPy Data Analysis/2. NumPy Arrays.srt 11KB 19. PCA/12. PCA - Visualization.srt 11KB 3. Python For Data Science/11. Python For Loops and While Loops.srt 11KB 4. Statistics for Data Science/5. Measures of Variable Relationship.srt 11KB 15. Decision Trees/5. The Decision Tree ID3 algorithm from scratch Part 2.srt 11KB 15. Decision Trees/15. Decision Trees Pros and Cons.srt 11KB 20. Data Science Career/1. Creating A Data Science Resume.srt 11KB 1. Introduction/2. Data Science + Machine Learning Marketplace.srt 10KB 4. Statistics for Data Science/8. Sampling Distribution.srt 10KB 4. Statistics for Data Science/2. Descriptive Statistics.srt 10KB 16. Ensemble Learning and Random Forests/5. Out-of-Bag Error (OOB Error).srt 10KB 3. Python For Data Science/8. Python Numbers & Booleans.srt 10KB 14. K Nearest Neighbors/11. Curse of dimensionality.srt 10KB 12. Feature Selecting and Engineering/1. Feature Engineering.srt 9KB 3. Python For Data Science/1. What is Programming.srt 9KB 8. Python Data Visualization/2. Different Data Visualization Libraries in Python.srt 9KB 5. Probability & Hypothesis Testing/3. Relative Frequency.srt 9KB 6. NumPy Data Analysis/5. NumPy Array Computations.srt 9KB 13. Linear and Logistic Regression/2. Gradient Descent.srt 8KB 20. Data Science Career/5. Top Freelance Websites.srt 8KB 16. Ensemble Learning and Random Forests/7. Implementing Random Forests from scratch Part 2.srt 8KB 14. K Nearest Neighbors/10. Feature scaling in KNN.srt 8KB 17. Support Vector Machines/9. SVM with Regression.srt 8KB 16. Ensemble Learning and Random Forests/10. Random Forests Pros and Cons.srt 8KB 14. K Nearest Neighbors/13. KNN pros and cons.srt 8KB 14. K Nearest Neighbors/9. Manhattan vs Euclidean Distance.srt 8KB 15. Decision Trees/11. Plot the features importance.srt 8KB 16. Ensemble Learning and Random Forests/4. What is Bagging.srt 8KB 17. Support Vector Machines/1. SVM Outline.srt 7KB 20. Data Science Career/3. How to Contact Recruiters.srt 7KB 19. PCA/11. PCA - Supervised vs Unsupervised.srt 7KB 3. Python For Data Science/12. Python Lists.srt 7KB 20. Data Science Career/4. Getting Started with Freelancing.srt 7KB 14. K Nearest Neighbors/8. The decision boundary visualization.srt 7KB 19. PCA/1. PCA Section Overview.srt 7KB 13. Linear and Logistic Regression/4. Linear Regression Implementation.srt 7KB 1. Introduction/3. Data Science Job Opportunities.srt 7KB 16. Ensemble Learning and Random Forests/11. What is Boosting.srt 7KB 3. Python For Data Science/2. Why Python for Data Science.srt 7KB 5. Probability & Hypothesis Testing/1. What is Exactly is Probability.srt 7KB 19. PCA/5. Covariance Matrix vs SVD.srt 7KB 20. Data Science Career/6. Personal Branding.srt 6KB 6. NumPy Data Analysis/6. Broadcasting.srt 6KB 20. Data Science Career/7. Networking Do's and Don'ts.srt 6KB 17. Support Vector Machines/10. SMV - Project Overview.srt 6KB 20. Data Science Career/2. Data Science Cover Letter.srt 6KB 16. Ensemble Learning and Random Forests/9. Random Forests Hyper-Parameters.srt 6KB 3. Python For Data Science/3. What is Jupyter.srt 6KB 15. Decision Trees/6. The Decision Tree ID3 algorithm from scratch Part 3.srt 6KB 17. Support Vector Machines/4. C hyper-parameter.srt 6KB 15. Decision Trees/1. Decision Trees Section Overview.srt 6KB 16. Ensemble Learning and Random Forests/12. AdaBoost Part 1.srt 5KB 16. Ensemble Learning and Random Forests/1. Ensemble Learning Section Overview.srt 5KB 14. K Nearest Neighbors/6. Compare the result with the sklearn library.srt 5KB 16. Ensemble Learning and Random Forests/8. Compare with sklearn implementation.srt 5KB 13. Linear and Logistic Regression/5. Logistic Regression.srt 5KB 2. Data Science & Machine Learning Concepts/1. Why We Use Python.srt 5KB 19. PCA/3. PCA Drawbacks.srt 5KB 3. Python For Data Science/4. What is Google Colab.srt 5KB 14. K Nearest Neighbors/12. KNN use cases.srt 5KB 20. Data Science Career/8. Importance of a Website.srt 5KB 14. K Nearest Neighbors/2. parametric vs non-parametric models.srt 5KB 14. K Nearest Neighbors/1. KNN Overview.srt 4KB 5. Probability & Hypothesis Testing/2. Expected Values.srt 4KB 1. Introduction/1. Who is This Course For.srt 4KB 19. PCA/6. PCA - Main Applications.srt 4KB 15. Decision Trees/14. [Optional] Gain Ration.srt 4KB 15. Decision Trees/16. [Project] Predict whether income exceeds $50Kyr - Overview.srt 4KB 14. K Nearest Neighbors/4. The KNN Intuition.srt 3KB 4. Statistics for Data Science/7. Measure of Asymmetry.srt 3KB 0. Websites you may like/[CourseClub.ME].url 122B 16. Ensemble Learning and Random Forests/[CourseClub.Me].url 122B 3. Python For Data Science/[CourseClub.Me].url 122B 9. Machine Learning/[CourseClub.Me].url 122B [CourseClub.Me].url 122B 0. Websites you may like/[GigaCourse.Com].url 49B 16. Ensemble Learning and Random Forests/[GigaCourse.Com].url 49B 3. Python For Data Science/[GigaCourse.Com].url 49B 9. Machine Learning/[GigaCourse.Com].url 49B [GigaCourse.Com].url 49B