[] Udemy - ML for Business Managers Build Regression model in R Studio 收录时间:2021-11-19 18:11:05 文件大小:3GB 下载次数:1 最近下载:2021-11-19 18:11:05 磁力链接: magnet:?xt=urn:btih:e4958120fb7bcf38a84d5b6b9a555fef33f2bee8 立即下载 复制链接 文件列表 7. Regression models other than OLS/6. Ridge regression and Lasso in R.mp4 124MB 4. Introduction to Machine Learning/1. Introduction to Machine Learning.mp4 124MB 3. Getting started with R and R studio/7. Creating Barplots in R.mp4 118MB 5. Data Preprocessing/16. Bi-variate Analysis and Variable Transformation.mp4 114MB 5. Data Preprocessing/7. EDD in R.mp4 112MB 6. Linear Regression Model/3. Assessing Accuracy of predicted coefficients.mp4 104MB 3. Getting started with R and R studio/3. Packages in R.mp4 99MB 5. Data Preprocessing/24. Correlation Matrix in R.mp4 95MB 6. Linear Regression Model/17. Test-Train Split in R.mp4 91MB 7. Regression models other than OLS/2. Subset Selection techniques.mp4 87MB 5. Data Preprocessing/23. Correlation Matrix and cause-effect relationship.mp4 81MB 5. Data Preprocessing/3. The Data and the Data Dictionary.mp4 79MB 7. Regression models other than OLS/3. Subset selection in R.mp4 77MB 6. Linear Regression Model/11. Multiple Linear Regression in R.mp4 73MB 3. Getting started with R and R studio/6. Inputting data part 3 Importing from CSV or Text files.mp4 69MB 5. Data Preprocessing/17. Variable transformation in R.mp4 68MB 2. Basics of Statistics/3. Describing the data graphically.mp4 65MB 6. Linear Regression Model/8. The F - statistic.mp4 64MB 5. Data Preprocessing/21. Dummy variable creation in R.mp4 52MB 3. Getting started with R and R studio/8. Creating Histograms in R.mp4 52MB 6. Linear Regression Model/5. Simple Linear Regression in R.mp4 51MB 6. Linear Regression Model/2. Basic equations and Ordinary Least Squared (OLS) method.mp4 50MB 6. Linear Regression Model/4. Assessing Model Accuracy - RSE and R squared.mp4 50MB 6. Linear Regression Model/14. Test-Train split.mp4 49MB 3. Getting started with R and R studio/2. Basics of R and R studio.mp4 48MB 1. Introduction/3. Course contents.mp4 47MB 3. Getting started with R and R studio/4. Inputting data part 1 Inbuilt datasets of R.mp4 46MB 4. Introduction to Machine Learning/2. Building a Machine Learning model.mp4 45MB 3. Getting started with R and R studio/1. Installing R and R studio.mp4 41MB 5. Data Preprocessing/20. Dummy variable creation Handling qualitative data.mp4 41MB 6. Linear Regression Model/7. Multiple Linear Regression.mp4 39MB 7. Regression models other than OLS/5. Shrinkage methods - Ridge Regression and The Lasso.mp4 39MB 2. Basics of Statistics/4. Measures of Centers.mp4 39MB 5. Data Preprocessing/10. Outlier Treatment in R.mp4 38MB 5. Data Preprocessing/13. Missing Value imputation in R.mp4 32MB 3. Getting started with R and R studio/5. Inputting data part 2 Manual data entry.mp4 31MB 6. Linear Regression Model/15. Bias Variance trade-off.mp4 30MB 5. Data Preprocessing/9. Outlier Treatment.mp4 28MB 5. Data Preprocessing/12. Missing Value imputation.mp4 28MB 5. Data Preprocessing/6. Univariate Analysis and EDD.mp4 27MB 6. Linear Regression Model/10. Interpreting result for categorical Variable.mp4 27MB 5. Data Preprocessing/1. Gathering Business Knowledge.mp4 25MB 5. Data Preprocessing/19. Non Usable Variables.mp4 24MB 5. Data Preprocessing/2. Data Exploration.mp4 23MB 2. Basics of Statistics/6. Measures of Dispersion.mp4 23MB 2. Basics of Statistics/1. Types of Data.mp4 22MB 5. Data Preprocessing/15. Seasonality in Data.mp4 21MB 1. Introduction/4. This is a milestone!.mp4 21MB 7. Regression models other than OLS/1. Linear models other than OLS.mp4 19MB 7. Regression models other than OLS/7. Heteroscedasticity.mp4 18MB 5. Data Preprocessing/4. Importing the dataset into R.mp4 16MB 1. Introduction/1. Welcome to the course!.mp4 15MB 8. Conclusion/2. The final milestone!.mp4 12MB 2. Basics of Statistics/2. Types of Statistics.mp4 11MB 6. Linear Regression Model/1. The problem statement.mp4 11MB 4. Introduction to Machine Learning/2.1 Lecture_machineLearning.pdf 1002KB 4. Introduction to Machine Learning/1.1 Lecture_machineLearning.pdf 992KB 1. Introduction/3.1 00_Introduction_01.pdf 791KB 2. Basics of Statistics/5.1 Exercise 1.pdf 554KB 2. Basics of Statistics/7.1 Exercise 2.pdf 480KB 5. Data Preprocessing/16.1 04_07_Variable_Transformation.pdf 423KB 5. Data Preprocessing/9.1 04_06_PDE_Outlier_Treatment.pdf 365KB 5. Data Preprocessing/15.1 04_07_PDE_Seasonality.pdf 364KB 6. Linear Regression Model/8.1 05_05_F_stat.pdf 338KB 5. Data Preprocessing/6.1 03_04_PDE_Univariate_Analysis_Uni.pdf 333KB 6. Linear Regression Model/3.1 05_03_Simple_lin_reg_Accuracy.pdf 333KB 6. Linear Regression Model/4.1 05_03_Simple_lin_reg_Accuracy.pdf 333KB 5. Data Preprocessing/3.1 03_03_PDE_Raw_Data_Analysis_Uni.pdf 332KB 5. Data Preprocessing/2.1 03_02_PDE_Data_exploration.pdf 323KB 2. Basics of Statistics/3.1 01_03_Lecture_DataSummaryandGraph.pdf 318KB 5. Data Preprocessing/12.1 04_05_PDE_Missing_value.pdf 316KB 2. Basics of Statistics/4.1 01_04_Lecture_Centers.pdf 313KB 6. Linear Regression Model/2.1 05_02_Simple_lin_reg.pdf 285KB 5. Data Preprocessing/23.1 04_10_Correlation.pdf 257KB 6. Linear Regression Model/1.1 05_01_Intro.pdf 239KB 6. Linear Regression Model/14.1 05_12_Test_Train.pdf 239KB 6. Linear Regression Model/7.1 05_04_Multiple_lin_reg.pdf 230KB 6. Linear Regression Model/15.1 05_13_Bias_Var_tradeoff.pdf 212KB 7. Regression models other than OLS/2.1 05_10_Subset_Selection.pdf 199KB 7. Regression models other than OLS/5.1 05_11_Shrinkage_methods.pdf 188KB 2. Basics of Statistics/1.1 01_01_Lecture_TypesOfData.pdf 178KB 2. Basics of Statistics/2.1 01_02_Lecture_TypesOfStatistics.pdf 172KB 5. Data Preprocessing/1.1 03_01_PDE_Business_knowledge.pdf 164KB 5. Data Preprocessing/20.1 04_11_Dummy_Var.pdf 163KB 7. Regression models other than OLS/1.1 05_09_Other_lin_model.pdf 157KB 6. Linear Regression Model/10.1 05_06_Cat_var.pdf 155KB 5. Data Preprocessing/19.1 04_08_PDE_Non_Usable_var.pdf 148KB 3. Getting started with R and R studio/6.1 Customer.csv 74KB 5. Data Preprocessing/3.2 House_Price.csv 63KB 5. Data Preprocessing/4.1 House_Price.csv 53KB 5. Data Preprocessing/5.1 Movie_collection_train.csv 43KB 4. Introduction to Machine Learning/1. Introduction to Machine Learning.srt 23KB 5. Data Preprocessing/16. Bi-variate Analysis and Variable Transformation.srt 18KB 3. Getting started with R and R studio/7. Creating Barplots in R.srt 18KB 6. Linear Regression Model/3. Assessing Accuracy of predicted coefficients.srt 16KB 3. Getting started with R and R studio/3. Packages in R.srt 14KB 3. Getting started with R and R studio/2. Basics of R and R studio.srt 14KB 7. Regression models other than OLS/2. Subset Selection techniques.srt 13KB 2. Basics of Statistics/3. Describing the data graphically.srt 13KB 4. Introduction to Machine Learning/2. Building a Machine Learning model.srt 13KB 8. Conclusion/1.1 Movie_collection_test.csv 12KB 5. Data Preprocessing/7. EDD in R.srt 12KB 7. Regression models other than OLS/6. Ridge regression and Lasso in R.srt 11KB 5. Data Preprocessing/23. Correlation Matrix and cause-effect relationship.srt 11KB 1. Introduction/3. Course contents.srt 10KB 6. Linear Regression Model/14. Test-Train split.srt 10KB 6. Linear Regression Model/2. Basic equations and Ordinary Least Squared (OLS) method.srt 10KB 5. Data Preprocessing/24. Correlation Matrix in R.srt 9KB 5. Data Preprocessing/17. Variable transformation in R.srt 9KB 6. Linear Regression Model/8. The F - statistic.srt 9KB 6. Linear Regression Model/17. Test-Train Split in R.srt 8KB 3. Getting started with R and R studio/6. Inputting data part 3 Importing from CSV or Text files.srt 8KB 6. Linear Regression Model/11. Multiple Linear Regression in R.srt 8KB 7. Regression models other than OLS/5. Shrinkage methods - Ridge Regression and The Lasso.srt 8KB 6. Linear Regression Model/4. Assessing Model Accuracy - RSE and R squared.srt 8KB 6. Linear Regression Model/5. Simple Linear Regression in R.srt 8KB 2. Basics of Statistics/4. Measures of Centers.srt 8KB 5. Data Preprocessing/3. The Data and the Data Dictionary.srt 8KB 7. Regression models other than OLS/3. Subset selection in R.srt 8KB 3. Getting started with R and R studio/8. Creating Histograms in R.srt 8KB 3. Getting started with R and R studio/1. Installing R and R studio.srt 7KB 6. Linear Regression Model/15. Bias Variance trade-off.srt 6KB 6. Linear Regression Model/7. Multiple Linear Regression.srt 6KB 3. Getting started with R and R studio/4. Inputting data part 1 Inbuilt datasets of R.srt 5KB 5. Data Preprocessing/19. Non Usable Variables.srt 5KB 6. Linear Regression Model/10. Interpreting result for categorical Variable.srt 5KB 2. Basics of Statistics/6. Measures of Dispersion.srt 5KB 5. Data Preprocessing/21. Dummy variable creation in R.srt 5KB 2. Basics of Statistics/1. Types of Data.srt 5KB 5. Data Preprocessing/20. Dummy variable creation Handling qualitative data.srt 5KB 5. Data Preprocessing/9. Outlier Treatment.srt 4KB 7. Regression models other than OLS/1. Linear models other than OLS.srt 4KB 5. Data Preprocessing/10. Outlier Treatment in R.srt 4KB 5. Data Preprocessing/12. Missing Value imputation.srt 4KB 5. Data Preprocessing/1. Gathering Business Knowledge.srt 4KB 1. Introduction/4. This is a milestone!.srt 4KB 5. Data Preprocessing/15. Seasonality in Data.srt 4KB 3. Getting started with R and R studio/5. Inputting data part 2 Manual data entry.srt 4KB 5. Data Preprocessing/2. Data Exploration.srt 4KB 5. Data Preprocessing/13. Missing Value imputation in R.srt 3KB 5. Data Preprocessing/6. Univariate Analysis and EDD.srt 3KB 1. Introduction/1. Welcome to the course!.srt 3KB 2. Basics of Statistics/2. Types of Statistics.srt 3KB 7. Regression models other than OLS/7. Heteroscedasticity.srt 3KB 5. Data Preprocessing/4. Importing the dataset into R.srt 3KB 8. Conclusion/3. Congratulations & About your certificate.html 2KB 8. Conclusion/2. The final milestone!.srt 2KB 6. Linear Regression Model/1. The problem statement.srt 2KB 5. Data Preprocessing/4.2 R_Linear.zip 1KB 6. Linear Regression Model/16. More about test-train split.html 559B 5. Data Preprocessing/5. Project Exercise 1.html 447B 7. Regression models other than OLS/8. Project Exercise 11.html 398B 2. Basics of Statistics/5. Practice Exercise 1.html 354B 1. Introduction/2. Course Resources.html 345B 8. Conclusion/1. Final Project Exercise.html 329B 6. Linear Regression Model/13. Project Exercise 9.html 328B 6. Linear Regression Model/6. Project Exercise 8.html 322B 2. Basics of Statistics/7. Practice Exercise 2.html 295B 5. Data Preprocessing/25. Project Exercise 7.html 288B 5. Data Preprocessing/18. Project Exercise 5.html 286B 5. Data Preprocessing/14. Project Exercise 4.html 238B 5. Data Preprocessing/11. Project Exercise 3.html 233B 4. Introduction to Machine Learning/3. Introduction to Machine learning quiz.html 207B 5. Data Preprocessing/26. Quiz.html 207B 6. Linear Regression Model/12. Quiz.html 207B 6. Linear Regression Model/18. Quiz.html 207B 6. Linear Regression Model/9. Quiz.html 207B 5. Data Preprocessing/22. Project Exercise 6.html 202B 7. Regression models other than OLS/4. Project Exercise 10.html 199B 5. Data Preprocessing/8. Project Exercise 2.html 177B 0. Websites you may like/[FCS Forum].url 133B 0. Websites you may like/[FreeCourseSite.com].url 127B 0. Websites you may like/[CourseClub.ME].url 122B 0. Websites you may like/[GigaCourse.Com].url 49B