Coursera - Probabilistic Graphical Models 收录时间:2018-03-17 07:38:06 文件大小:1GB 下载次数:344 最近下载:2021-01-15 18:18:28 磁力链接: magnet:?xt=urn:btih:e74f08f0fc699e84a9eb046309727d07d80171c5 立即下载 复制链接 文件列表 Lectures/Week 7 - 19 Learning- Parameter Estimation in MNs/01_Maximum_Likelihood_for_Log-Linear_Models_28-47.mp4 35MB Lectures/Week 9 - 23 Summary/01_Class_Summary_24-38.mp4 32MB Lectures/Week 6 - 15 Decision Theory/01_Maximum_Expected_Utility_25-57.mp4 29MB Lectures/Week 8 - 20 Structure Learning/06_Learning_General_Graphs-_Heuristic_Search_23-36.mp4 27MB Lectures/Week 9 - 21 Learning With Incomplete Data/05_Latent_Variables_22-00.mp4 27MB Lectures/Week 1 - 03 Template Models/02_Temporal_Models_-_DBNs_23-02.mp4 26MB Lectures/Week 2 - 06 Markov Network Fundamentals/06_Log-Linear_Models_22-08.mp4 26MB Lectures/Week 9 - 22 Learning- Wrapup/01_Summary-_Learning_20-11.mp4 26MB Lectures/Week 2 - 06 Markov Network Fundamentals/03_Conditional_Random_Fields_22-22.mp4 25MB Lectures/Week 9 - 21 Learning With Incomplete Data/01_Learning_With_Incomplete_Data_-_Overview_21-34.mp4 25MB Lectures/Week 3 - 07 Representation Wrapup-Knowledge Engineering/01_Knowledge_Engineering_23-05.mp4 25MB Lectures/Week 6 - 14 Inference- Temporal Models and Wrap-up/01_Inference_in_Temporal_Models_19-43.mp4 23MB Lectures/Week 1 - 01 Introduction and Overview/02_Overview_and_Motivation_19-17.mp4 23MB Lectures/Week 8 - 20 Structure Learning/04_Bayesian_Scores_20-35.mp4 23MB Lectures/Week 1 - 03 Template Models/04_Plate_Models_20-08.mp4 22MB Lectures/Week 2 - 06 Markov Network Fundamentals/05_I-maps_and_perfect_maps_20-59.mp4 22MB Lectures/Week 1 - 02 Bayesian Network Fundamentals/05_Independencies_in_Bayesian_Networks_18-18.mp4 22MB Lectures/Week 7 - 18 Learning- Parameter Estimation in BNs/05_Bayesian_Estimation_for_Bayesian_Networks_17-02.mp4 21MB Lectures/Week 1 - 04 ML-class Octave Tutorial/02_Moving_Data_Around_16-07.mp4 21MB Lectures/Week 6 - 15 Decision Theory/02_Utility_Functions_18-15.mp4 20MB Lectures/Week 1 - 02 Bayesian Network Fundamentals/01_Semantics__Factorization_17-20.mp4 20MB Lectures/Week 6 - 15 Decision Theory/03_Value_of_Perfect_Information_17-14.mp4 19MB Lectures/Week 2 - 06 Markov Network Fundamentals/02_General_Gibbs_Distribution_15-52.mp4 19MB Lectures/Week 8 - 20 Structure Learning/02_Likelihood_Scores_16-49.mp4 19MB Lectures/Week 7 - 18 Learning- Parameter Estimation in BNs/03_Bayesian_Estimation_15-27.mp4 19MB Lectures/Week 9 - 21 Learning With Incomplete Data/02_Expectation_Maximization_-_Intro_16-17.mp4 18MB Lectures/Week 1 - 04 ML-class Octave Tutorial/01_Basic_Operations_13-59.mp4 18MB Lectures/Week 7 - 18 Learning- Parameter Estimation in BNs/02_Maximum_Likelihood_Estimation_for_Bayesian_Networks_15-49.mp4 18MB Lectures/Week 8 - 20 Structure Learning/07_Learning_General_Graphs-_Search_and_Decomposability_15-46.mp4 18MB Lectures/Week 6 - 17 Learning-Overview/01_Learning-_Overview_15-35.mp4 18MB Lectures/Week 5 - 13 Inference- Sampling Methods/05_Metropolis_Hastings_Algorithm_27-06.mp4 17MB Lectures/Week 1 - 04 ML-class Octave Tutorial/05_Control_Statements-_for_while_if_statements_12-55.mp4 16MB Lectures/Week 7 - 18 Learning- Parameter Estimation in BNs/04_Bayesian_Prediction_13-40.mp4 16MB Lectures/Week 1 - 04 ML-class Octave Tutorial/06_Vectorization_13-48.mp4 16MB Lectures/Week 2 - 05 Structured CPDs/02_Tree-Structured_CPDs_14-37.mp4 16MB Lectures/Week 2 - 05 Structured CPDs/03_Independence_of_Causal_Influence_13-08.mp4 16MB Lectures/Week 1 - 02 Bayesian Network Fundamentals/04_Conditional_Independence_12-38.mp4 16MB Lectures/Week 1 - 02 Bayesian Network Fundamentals/03_Flow_of_Probabilistic_Influence_14-36.mp4 15MB Lectures/Week 2 - 05 Structured CPDs/04_Continuous_Variables_13-25.mp4 15MB Lectures/Week 1 - 04 ML-class Octave Tutorial/03_Computing_On_Data_13-15.mp4 15MB Lectures/Week 7 - 18 Learning- Parameter Estimation in BNs/01_Maximum_Likelihood_Estimation_14-59.mp4 15MB Lectures/Week 7 - 19 Learning- Parameter Estimation in MNs/02_Maximum_Likelihood_for_Conditional_Random_Fields_13-24.mp4 15MB Lectures/Week 3 - 08 Inference-Variable Elimination/04_Complexity_of_Variable_Elimination_12-48.mp4 15MB Lectures/Week 8 - 20 Structure Learning/05_Learning_Tree_Structured_Networks_12-05.mp4 14MB Lectures/Week 6 - 14 Inference- Temporal Models and Wrap-up/02_Inference-_Summary_12-45.mp4 14MB Lectures/Week 6 - 16 ML-class Revision/04_Model_Selection_and_Train_Validation_Test_Sets_12-03.mp4 14MB Lectures/Week 5 - 13 Inference- Sampling Methods/01_Simple_Sampling_23-37.mp4 14MB Lectures/Week 1 - 03 Template Models/03_Temporal_Models_-_HMMs_12-01.mp4 14MB Lectures/Week 1 - 04 ML-class Octave Tutorial/04_Plotting_Data_09-38.mp4 13MB Lectures/Week 3 - 09 Inference-Belief Propagation Part 1/01_Belief_Propagation_21-21.mp4 13MB Lectures/Week 4 - 10 Inference-Belief Propagation Part 2/07_Loopy_BP_and_Message_Decoding_21-42.mp4 13MB Lectures/Week 9 - 21 Learning With Incomplete Data/03_Analysis_of_EM_Algorithm_11-32.mp4 13MB Lectures/Week 1 - 02 Bayesian Network Fundamentals/08_Knowledge_Engineering_Example_-_SAMIAM_14-14.mp4 13MB Lectures/Week 9 - 21 Learning With Incomplete Data/04_EM_in_Practice_11-17.mp4 13MB Lectures/Week 4 - 11 Inference-MAP Estimation Part 1/01_Max_Sum_Message_Passing_20-27.mp4 13MB Lectures/Week 6 - 16 ML-class Revision/06_Regularization_and_Bias_Variance_11-20.mp4 13MB Lectures/Week 2 - 06 Markov Network Fundamentals/01_Pairwise_Markov_Networks_10-59.mp4 13MB Lectures/Week 8 - 20 Structure Learning/03_BIC_and_Asymptotic_Consistency_11-26.mp4 13MB Lectures/Week 5 - 13 Inference- Sampling Methods/04_Gibbs_Sampling_19-26.mp4 13MB Lectures/Week 6 - 16 ML-class Revision/02_Regularization-_Cost_Function_10-10.mp4 12MB Lectures/Week 1 - 03 Template Models/01_Overview_of_Template_Models_10-55.mp4 12MB Lectures/Week 1 - 02 Bayesian Network Fundamentals/07_Application_-_Medical_Diagnosis_09-19.mp4 12MB Lectures/Week 7 - 19 Learning- Parameter Estimation in MNs/03_MAP_Estimation_for_MRFs_and_CRFs_9-59.mp4 11MB Lectures/Week 5 - 12 Inference- MAP Estimation Part 2/02_Dual_Decomposition_-_Intuition_17-46.mp4 11MB Lectures/Week 6 - 16 ML-class Revision/01_Regularization-_The_Problem_of_Overfitting_09-42.mp4 11MB Lectures/Week 3 - 08 Inference-Variable Elimination/03_Variable_Elimination_Algorithm_16-17.mp4 11MB Lectures/Week 1 - 02 Bayesian Network Fundamentals/02_Reasoning_Patterns_09-59.mp4 11MB Lectures/Week 1 - 02 Bayesian Network Fundamentals/06_Naive_Bayes_09-52.mp4 11MB Lectures/Week 4 - 10 Inference-Belief Propagation Part 2/05_Clique_Trees_and_VE_16-17.mp4 11MB Lectures/Week 4 - 10 Inference-Belief Propagation Part 2/02_Clique_Tree_Algorithm_-_Correctness_18-23.mp4 10MB Lectures/Week 2 - 06 Markov Network Fundamentals/07_Shared_Features_in_Log-Linear_Models_08-28.mp4 10MB Lectures/Week 5 - 12 Inference- MAP Estimation Part 2/03_Dual_Decomposition_-_Algorithm_16-16.mp4 10MB Lectures/Week 3 - 09 Inference-Belief Propagation Part 1/02_Properties_of_Cluster_Graphs_15-00.mp4 10MB Lectures/Week 5 - 12 Inference- MAP Estimation Part 2/01_Tractable_MAP_Problems_15-04.mp4 10MB Lectures/Week 2 - 05 Structured CPDs/01_Overview-_Structured_CPDs_08-00.mp4 10MB Lectures/Week 3 - 08 Inference-Variable Elimination/05_Graph-Based_Perspective_on_Variable_Elimination_15-25.mp4 10MB Lectures/Week 5 - 13 Inference- Sampling Methods/03_Using_a_Markov_Chain_15-27.mp4 10MB Lectures/Week 4 - 10 Inference-Belief Propagation Part 2/04_Clique_Trees_and_Independence_15-21.mp4 10MB Lectures/Week 5 - 13 Inference- Sampling Methods/02_Markov_Chain_Monte_Carlo_14-18.mp4 9MB Lectures/Week 4 - 10 Inference-Belief Propagation Part 2/06_BP_In_Practice_15-38.mp4 9MB Lectures/Week 3 - 08 Inference-Variable Elimination/01_Overview-_Conditional_Probability_Queries_15-22.mp4 9MB Lectures/Week 6 - 16 ML-class Revision/05_Diagnosing_Bias_vs_Variance_07-42.mp4 9MB Lectures/Week 3 - 08 Inference-Variable Elimination/06_Finding_Elimination_Orderings_11-58.mp4 9MB Lectures/Week 4 - 10 Inference-Belief Propagation Part 2/03_Clique_Tree_Algorithm_-_Computation_16-18.mp4 9MB Lectures/Week 6 - 16 ML-class Revision/03_Evaluating_a_Hypothesis_07-35.mp4 8MB Lectures/Week 1 - 01 Introduction and Overview/04_Factors_06-40.mp4 7MB Lectures/Week 1 - 01 Introduction and Overview/01_Welcome_05-35.mp4 7MB Lectures/Week 8 - 20 Structure Learning/01_Structure_Learning_Overview_5-49.mp4 7MB Lectures/Week 3 - 08 Inference-Variable Elimination/02_Overview-_MAP_Inference_09-42.mp4 6MB Lectures/Week 2 - 06 Markov Network Fundamentals/04_Independencies_in_Markov_Networks_04-48.mp4 6MB Lectures/Week 1 - 01 Introduction and Overview/03_Distributions_04-56.mp4 6MB Lectures/Week 4 - 10 Inference-Belief Propagation Part 2/01_Properties_of_Belief_Propagation_9-31.mp4 6MB Lectures/Week 1 - 04 ML-class Octave Tutorial/07_Working_on_and_Submitting_Programming_Exercises_03-33.mp4 5MB Assignments/Assignment 3/inference/doinference.exe 3MB Lectures/Week 4 - 11 Inference-MAP Estimation Part 1/02_Finding_a_MAP_Assignment_3-57.mp4 3MB Assignments/Assignment 9/PA9Data.mat 3MB Assignments/Assignment 3/inference/doinference-linux 2MB Assignments/Assignment 3/inference/inference-src.zip 2MB Assignments/Assignment 2/PA2Description.pdf 1MB Assignments/Assignment 9/PA9SampleCases.mat 1MB Assignments/Assignment 9/PA9Description.pdf 987KB Assignments/Assignment 9/submit_input.mat 842KB Assignments/Assignment 3/inference/doinference-mac 816KB Assignments/Assignment 5/Assignment 5.pdf 522KB Assignments/Assignment 7/PA7Description.pdf 487KB Assignments/Assignment 6/Assignment 6.pdf 456KB Assignments/Assignment 8/submit_input.mat 453KB Assignments/Assignment 4/Assignment 4.pdf 421KB Assignments/Assignment 3/PA3Description.pdf 413KB Assignments/Assignment 8/PA8Description.pdf 378KB Assignments/Assignment 8/PA8SampleCases.mat 288KB Assignments/Assignment 1/Assignment 1.pdf 276KB Assignments/Assignment 4/PA4Sample.mat 215KB Assignments/Assignment 8/PA8Data.mat 191KB Assignments/Assignment 2/PA2Appendix.pdf 98KB Assignments/Assignment 7/Part2Sample.mat 85KB Assignments/Assignment 3/PA3SampleCases.mat 74KB Assignments/Assignment 4/PA4Test.mat 63KB Assignments/Assignment 3/PA3Models.mat 54KB Assignments/Assignment 5/exampleIOPA5.mat 44KB Assignments/Assignment 5/submit.m 37KB Lectures/Week 5 - 13 Inference- Sampling Methods/05_Metropolis_Hastings_Algorithm_27-06.srt 32KB Lectures/Week 7 - 19 Learning- Parameter Estimation in MNs/01_Maximum_Likelihood_for_Log-Linear_Models_28-47.srt 31KB Lectures/Week 8 - 20 Structure Learning/06_Learning_General_Graphs-_Heuristic_Search_23-36.srt 30KB Lectures/Week 6 - 15 Decision Theory/01_Maximum_Expected_Utility_25-57.srt 30KB Assignments/Assignment 6/submit.m 28KB Assignments/Assignment 4/submit.m 28KB Lectures/Week 3 - 07 Representation Wrapup-Knowledge Engineering/01_Knowledge_Engineering_23-05.srt 28KB Lectures/Week 2 - 06 Markov Network Fundamentals/06_Log-Linear_Models_22-08.srt 27KB Lectures/Week 4 - 10 Inference-Belief Propagation Part 2/07_Loopy_BP_and_Message_Decoding_21-42.srt 27KB Lectures/Week 1 - 03 Template Models/02_Temporal_Models_-_DBNs_23-02.srt 26KB Assignments/Assignment 2/submit.m 26KB Lectures/Week 5 - 13 Inference- Sampling Methods/01_Simple_Sampling_23-37.srt 26KB Lectures/Week 9 - 21 Learning With Incomplete Data/05_Latent_Variables_22-00.srt 25KB Lectures/Week 6 - 14 Inference- Temporal Models and Wrap-up/01_Inference_in_Temporal_Models_19-43.srt 25KB Lectures/Week 1 - 01 Introduction and Overview/02_Overview_and_Motivation_19-17.srt 25KB Lectures/Week 9 - 21 Learning With Incomplete Data/01_Learning_With_Incomplete_Data_-_Overview_21-34.srt 25KB Assignments/Assignment 8/submit.m 24KB Lectures/Week 3 - 09 Inference-Belief Propagation Part 1/01_Belief_Propagation_21-21.srt 24KB Lectures/Week 8 - 20 Structure Learning/04_Bayesian_Scores_20-35.srt 24KB Lectures/Week 1 - 03 Template Models/04_Plate_Models_20-08.srt 23KB Lectures/Week 2 - 06 Markov Network Fundamentals/03_Conditional_Random_Fields_22-22.srt 23KB Lectures/Week 1 - 02 Bayesian Network Fundamentals/08_Knowledge_Engineering_Example_-_SAMIAM_14-14.srt 23KB Lectures/Week 1 - 02 Bayesian Network Fundamentals/05_Independencies_in_Bayesian_Networks_18-18.srt 23KB Assignments/Assignment 1/submit.m 22KB Lectures/Week 2 - 06 Markov Network Fundamentals/05_I-maps_and_perfect_maps_20-59.srt 22KB Lectures/Week 4 - 11 Inference-MAP Estimation Part 1/01_Max_Sum_Message_Passing_20-27.srt 22KB Lectures/Week 5 - 13 Inference- Sampling Methods/05_Metropolis_Hastings_Algorithm_27-06.txt 22KB Assignments/Assignment 9/submit.m 22KB Lectures/Week 6 - 15 Decision Theory/03_Value_of_Perfect_Information_17-14.srt 22KB Lectures/Week 7 - 19 Learning- Parameter Estimation in MNs/01_Maximum_Likelihood_for_Log-Linear_Models_28-47.txt 21KB Lectures/Week 1 - 02 Bayesian Network Fundamentals/01_Semantics__Factorization_17-20.srt 21KB Lectures/Week 6 - 15 Decision Theory/02_Utility_Functions_18-15.srt 21KB Lectures/Week 8 - 20 Structure Learning/06_Learning_General_Graphs-_Heuristic_Search_23-36.txt 21KB Assignments/Assignment 3/submit.m 21KB Assignments/Assignment 7/submit.m 20KB Lectures/Week 6 - 15 Decision Theory/01_Maximum_Expected_Utility_25-57.txt 20KB Lectures/Week 4 - 10 Inference-Belief Propagation Part 2/02_Clique_Tree_Algorithm_-_Correctness_18-23.srt 20KB Lectures/Week 9 - 21 Learning With Incomplete Data/02_Expectation_Maximization_-_Intro_16-17.srt 20KB Lectures/Week 5 - 12 Inference- MAP Estimation Part 2/02_Dual_Decomposition_-_Intuition_17-46.srt 20KB Lectures/Week 5 - 13 Inference- Sampling Methods/04_Gibbs_Sampling_19-26.srt 20KB Lectures/Week 6 - 17 Learning-Overview/01_Learning-_Overview_15-35.srt 19KB Lectures/Week 5 - 12 Inference- MAP Estimation Part 2/01_Tractable_MAP_Problems_15-04.srt 19KB Lectures/Week 7 - 18 Learning- Parameter Estimation in BNs/05_Bayesian_Estimation_for_Bayesian_Networks_17-02.srt 19KB Lectures/Week 8 - 20 Structure Learning/02_Likelihood_Scores_16-49.srt 19KB Lectures/Week 1 - 04 ML-class Octave Tutorial/02_Moving_Data_Around_16-07.srt 19KB Lectures/Week 5 - 12 Inference- MAP Estimation Part 2/03_Dual_Decomposition_-_Algorithm_16-16.srt 18KB Lectures/Week 3 - 07 Representation Wrapup-Knowledge Engineering/01_Knowledge_Engineering_23-05.txt 18KB Assignments/Assignment 7/Part2Test.mat 18KB Lectures/Week 4 - 10 Inference-Belief Propagation Part 2/07_Loopy_BP_and_Message_Decoding_21-42.txt 18KB Lectures/Week 1 - 03 Template Models/02_Temporal_Models_-_DBNs_23-02.txt 18KB Lectures/Week 5 - 13 Inference- Sampling Methods/01_Simple_Sampling_23-37.txt 18KB Lectures/Week 5 - 13 Inference- Sampling Methods/03_Using_a_Markov_Chain_15-27.srt 18KB Lectures/Week 7 - 18 Learning- Parameter Estimation in BNs/03_Bayesian_Estimation_15-27.srt 18KB Lectures/Week 4 - 10 Inference-Belief Propagation Part 2/05_Clique_Trees_and_VE_16-17.srt 18KB Lectures/Week 3 - 08 Inference-Variable Elimination/03_Variable_Elimination_Algorithm_16-17.srt 18KB Lectures/Week 3 - 08 Inference-Variable Elimination/01_Overview-_Conditional_Probability_Queries_15-22.srt 17KB Lectures/Week 4 - 10 Inference-Belief Propagation Part 2/06_BP_In_Practice_15-38.srt 17KB Lectures/Week 9 - 21 Learning With Incomplete Data/05_Latent_Variables_22-00.txt 17KB Lectures/Week 5 - 13 Inference- Sampling Methods/02_Markov_Chain_Monte_Carlo_14-18.srt 17KB Lectures/Week 4 - 10 Inference-Belief Propagation Part 2/04_Clique_Trees_and_Independence_15-21.srt 17KB Lectures/Week 6 - 14 Inference- Temporal Models and Wrap-up/01_Inference_in_Temporal_Models_19-43.txt 17KB Lectures/Week 1 - 01 Introduction and Overview/02_Overview_and_Motivation_19-17.txt 17KB Lectures/Week 9 - 21 Learning With Incomplete Data/01_Learning_With_Incomplete_Data_-_Overview_21-34.txt 17KB Lectures/Week 2 - 05 Structured CPDs/02_Tree-Structured_CPDs_14-37.srt 17KB Lectures/Week 7 - 18 Learning- Parameter Estimation in BNs/02_Maximum_Likelihood_Estimation_for_Bayesian_Networks_15-49.srt 17KB Lectures/Week 1 - 04 ML-class Octave Tutorial/06_Vectorization_13-48.srt 17KB Lectures/Week 2 - 06 Markov Network Fundamentals/06_Log-Linear_Models_22-08.txt 17KB Lectures/Week 3 - 09 Inference-Belief Propagation Part 1/02_Properties_of_Cluster_Graphs_15-00.srt 17KB Lectures/Week 1 - 04 ML-class Octave Tutorial/01_Basic_Operations_13-59.srt 16KB Lectures/Week 6 - 14 Inference- Temporal Models and Wrap-up/02_Inference-_Summary_12-45.srt 16KB Lectures/Week 3 - 09 Inference-Belief Propagation Part 1/01_Belief_Propagation_21-21.txt 16KB Lectures/Week 8 - 20 Structure Learning/04_Bayesian_Scores_20-35.txt 16KB Lectures/Week 2 - 06 Markov Network Fundamentals/02_General_Gibbs_Distribution_15-52.srt 16KB Lectures/Week 4 - 10 Inference-Belief Propagation Part 2/03_Clique_Tree_Algorithm_-_Computation_16-18.srt 16KB Lectures/Week 6 - 16 ML-class Revision/04_Model_Selection_and_Train_Validation_Test_Sets_12-03.srt 16KB Lectures/Week 1 - 03 Template Models/04_Plate_Models_20-08.txt 16KB Lectures/Week 2 - 06 Markov Network Fundamentals/03_Conditional_Random_Fields_22-22.txt 16KB Lectures/Week 1 - 04 ML-class Octave Tutorial/03_Computing_On_Data_13-15.srt 16KB Lectures/Week 7 - 19 Learning- Parameter Estimation in MNs/02_Maximum_Likelihood_for_Conditional_Random_Fields_13-24.srt 16KB Lectures/Week 1 - 02 Bayesian Network Fundamentals/05_Independencies_in_Bayesian_Networks_18-18.txt 16KB Lectures/Week 1 - 02 Bayesian Network Fundamentals/03_Flow_of_Probabilistic_Influence_14-36.srt 15KB Lectures/Week 7 - 18 Learning- Parameter Estimation in BNs/01_Maximum_Likelihood_Estimation_14-59.srt 15KB Lectures/Week 4 - 11 Inference-MAP Estimation Part 1/01_Max_Sum_Message_Passing_20-27.txt 15KB Lectures/Week 2 - 06 Markov Network Fundamentals/05_I-maps_and_perfect_maps_20-59.txt 15KB Lectures/Week 9 - 21 Learning With Incomplete Data/04_EM_in_Practice_11-17.srt 15KB Lectures/Week 1 - 03 Template Models/03_Temporal_Models_-_HMMs_12-01.srt 15KB Lectures/Week 1 - 04 ML-class Octave Tutorial/05_Control_Statements-_for_while_if_statements_12-55.srt 15KB Lectures/Week 7 - 18 Learning- Parameter Estimation in BNs/04_Bayesian_Prediction_13-40.srt 15KB Lectures/Week 1 - 02 Bayesian Network Fundamentals/04_Conditional_Independence_12-38.srt 15KB Lectures/Week 6 - 15 Decision Theory/03_Value_of_Perfect_Information_17-14.txt 15KB Lectures/Week 6 - 16 ML-class Revision/06_Regularization_and_Bias_Variance_11-20.srt 15KB Lectures/Week 3 - 08 Inference-Variable Elimination/05_Graph-Based_Perspective_on_Variable_Elimination_15-25.srt 15KB Lectures/Week 2 - 05 Structured CPDs/04_Continuous_Variables_13-25.srt 15KB Lectures/Week 1 - 02 Bayesian Network Fundamentals/01_Semantics__Factorization_17-20.txt 14KB Assignments/Assignment 3/PA3Data.mat 14KB Lectures/Week 6 - 15 Decision Theory/02_Utility_Functions_18-15.txt 14KB Lectures/Week 3 - 08 Inference-Variable Elimination/06_Finding_Elimination_Orderings_11-58.srt 14KB Lectures/Week 8 - 20 Structure Learning/05_Learning_Tree_Structured_Networks_12-05.srt 14KB Lectures/Week 2 - 05 Structured CPDs/03_Independence_of_Causal_Influence_13-08.srt 14KB Lectures/Week 9 - 21 Learning With Incomplete Data/02_Expectation_Maximization_-_Intro_16-17.txt 14KB Lectures/Week 4 - 10 Inference-Belief Propagation Part 2/02_Clique_Tree_Algorithm_-_Correctness_18-23.txt 14KB Lectures/Week 8 - 20 Structure Learning/03_BIC_and_Asymptotic_Consistency_11-26.srt 14KB Lectures/Week 2 - 06 Markov Network Fundamentals/01_Pairwise_Markov_Networks_10-59.srt 13KB Lectures/Week 5 - 12 Inference- MAP Estimation Part 2/02_Dual_Decomposition_-_Intuition_17-46.txt 13KB Lectures/Week 5 - 13 Inference- Sampling Methods/04_Gibbs_Sampling_19-26.txt 13KB Lectures/Week 6 - 17 Learning-Overview/01_Learning-_Overview_15-35.txt 13KB Lectures/Week 9 - 21 Learning With Incomplete Data/03_Analysis_of_EM_Algorithm_11-32.srt 13KB Lectures/Week 7 - 18 Learning- Parameter Estimation in BNs/05_Bayesian_Estimation_for_Bayesian_Networks_17-02.txt 13KB Lectures/Week 5 - 12 Inference- MAP Estimation Part 2/01_Tractable_MAP_Problems_15-04.txt 13KB Lectures/Week 6 - 16 ML-class Revision/01_Regularization-_The_Problem_of_Overfitting_09-42.srt 13KB Lectures/Week 8 - 20 Structure Learning/02_Likelihood_Scores_16-49.txt 13KB Lectures/Week 3 - 08 Inference-Variable Elimination/04_Complexity_of_Variable_Elimination_12-48.srt 13KB Lectures/Week 6 - 16 ML-class Revision/02_Regularization-_Cost_Function_10-10.srt 13KB Lectures/Week 1 - 04 ML-class Octave Tutorial/02_Moving_Data_Around_16-07.txt 13KB Lectures/Week 1 - 03 Template Models/01_Overview_of_Template_Models_10-55.srt 13KB Lectures/Week 5 - 12 Inference- MAP Estimation Part 2/03_Dual_Decomposition_-_Algorithm_16-16.txt 13KB Lectures/Week 1 - 02 Bayesian Network Fundamentals/08_Knowledge_Engineering_Example_-_SAMIAM_14-14.txt 12KB Lectures/Week 7 - 19 Learning- Parameter Estimation in MNs/03_MAP_Estimation_for_MRFs_and_CRFs_9-59.srt 12KB Lectures/Week 5 - 13 Inference- Sampling Methods/03_Using_a_Markov_Chain_15-27.txt 12KB Lectures/Week 4 - 10 Inference-Belief Propagation Part 2/05_Clique_Trees_and_VE_16-17.txt 12KB Lectures/Week 7 - 18 Learning- Parameter Estimation in BNs/03_Bayesian_Estimation_15-27.txt 12KB Lectures/Week 1 - 02 Bayesian Network Fundamentals/07_Application_-_Medical_Diagnosis_09-19.srt 12KB Lectures/Week 3 - 08 Inference-Variable Elimination/03_Variable_Elimination_Algorithm_16-17.txt 12KB Lectures/Week 3 - 08 Inference-Variable Elimination/01_Overview-_Conditional_Probability_Queries_15-22.txt 12KB Lectures/Week 1 - 02 Bayesian Network Fundamentals/02_Reasoning_Patterns_09-59.srt 12KB Lectures/Week 4 - 10 Inference-Belief Propagation Part 2/06_BP_In_Practice_15-38.txt 12KB Lectures/Week 5 - 13 Inference- Sampling Methods/02_Markov_Chain_Monte_Carlo_14-18.txt 12KB Lectures/Week 4 - 10 Inference-Belief Propagation Part 2/04_Clique_Trees_and_Independence_15-21.txt 12KB Lectures/Week 2 - 05 Structured CPDs/02_Tree-Structured_CPDs_14-37.txt 11KB Lectures/Week 7 - 18 Learning- Parameter Estimation in BNs/02_Maximum_Likelihood_Estimation_for_Bayesian_Networks_15-49.txt 11KB Lectures/Week 1 - 04 ML-class Octave Tutorial/06_Vectorization_13-48.txt 11KB Lectures/Week 3 - 09 Inference-Belief Propagation Part 1/02_Properties_of_Cluster_Graphs_15-00.txt 11KB Lectures/Week 1 - 04 ML-class Octave Tutorial/01_Basic_Operations_13-59.txt 11KB Lectures/Week 1 - 04 ML-class Octave Tutorial/04_Plotting_Data_09-38.srt 11KB Lectures/Week 3 - 08 Inference-Variable Elimination/02_Overview-_MAP_Inference_09-42.srt 11KB Lectures/Week 6 - 14 Inference- Temporal Models and Wrap-up/02_Inference-_Summary_12-45.txt 11KB Lectures/Week 1 - 02 Bayesian Network Fundamentals/06_Naive_Bayes_09-52.srt 11KB Lectures/Week 2 - 06 Markov Network Fundamentals/02_General_Gibbs_Distribution_15-52.txt 11KB Lectures/Week 4 - 10 Inference-Belief Propagation Part 2/03_Clique_Tree_Algorithm_-_Computation_16-18.txt 11KB Lectures/Week 6 - 16 ML-class Revision/04_Model_Selection_and_Train_Validation_Test_Sets_12-03.txt 11KB Lectures/Week 1 - 04 ML-class Octave Tutorial/03_Computing_On_Data_13-15.txt 11KB Lectures/Week 7 - 19 Learning- Parameter Estimation in MNs/02_Maximum_Likelihood_for_Conditional_Random_Fields_13-24.txt 11KB Lectures/Week 7 - 18 Learning- Parameter Estimation in BNs/01_Maximum_Likelihood_Estimation_14-59.txt 11KB Lectures/Week 1 - 02 Bayesian Network Fundamentals/03_Flow_of_Probabilistic_Influence_14-36.txt 11KB Lectures/Week 4 - 10 Inference-Belief Propagation Part 2/01_Properties_of_Belief_Propagation_9-31.srt 10KB Lectures/Week 6 - 16 ML-class Revision/05_Diagnosing_Bias_vs_Variance_07-42.srt 10KB Lectures/Week 1 - 04 ML-class Octave Tutorial/05_Control_Statements-_for_while_if_statements_12-55.txt 10KB Lectures/Week 9 - 21 Learning With Incomplete Data/04_EM_in_Practice_11-17.txt 10KB Lectures/Week 1 - 03 Template Models/03_Temporal_Models_-_HMMs_12-01.txt 10KB Lectures/Week 7 - 18 Learning- Parameter Estimation in BNs/04_Bayesian_Prediction_13-40.txt 10KB Lectures/Week 1 - 02 Bayesian Network Fundamentals/04_Conditional_Independence_12-38.txt 10KB Assignments/Assignment 2/sendToSamiamGeneCopy.m 10KB Lectures/Week 6 - 16 ML-class Revision/06_Regularization_and_Bias_Variance_11-20.txt 10KB Lectures/Week 3 - 08 Inference-Variable Elimination/05_Graph-Based_Perspective_on_Variable_Elimination_15-25.txt 10KB Lectures/Week 1 - 01 Introduction and Overview/01_Welcome_05-35.srt 10KB Lectures/Week 2 - 05 Structured CPDs/01_Overview-_Structured_CPDs_08-00.srt 10KB Lectures/Week 2 - 05 Structured CPDs/04_Continuous_Variables_13-25.txt 10KB Lectures/Week 3 - 08 Inference-Variable Elimination/06_Finding_Elimination_Orderings_11-58.txt 10KB Lectures/Week 8 - 20 Structure Learning/05_Learning_Tree_Structured_Networks_12-05.txt 10KB Lectures/Week 2 - 05 Structured CPDs/03_Independence_of_Causal_Influence_13-08.txt 10KB Lectures/Week 8 - 20 Structure Learning/03_BIC_and_Asymptotic_Consistency_11-26.txt 9KB Lectures/Week 2 - 06 Markov Network Fundamentals/01_Pairwise_Markov_Networks_10-59.txt 9KB Lectures/Week 6 - 16 ML-class Revision/03_Evaluating_a_Hypothesis_07-35.srt 9KB Lectures/Week 2 - 06 Markov Network Fundamentals/07_Shared_Features_in_Log-Linear_Models_08-28.srt 9KB Lectures/Week 9 - 21 Learning With Incomplete Data/03_Analysis_of_EM_Algorithm_11-32.txt 9KB Lectures/Week 3 - 08 Inference-Variable Elimination/04_Complexity_of_Variable_Elimination_12-48.txt 9KB Lectures/Week 6 - 16 ML-class Revision/01_Regularization-_The_Problem_of_Overfitting_09-42.txt 9KB Lectures/Week 1 - 03 Template Models/01_Overview_of_Template_Models_10-55.txt 9KB Lectures/Week 6 - 16 ML-class Revision/02_Regularization-_Cost_Function_10-10.txt 9KB Assignments/Assignment 7/Part2LogZTest.mat 9KB Lectures/Week 1 - 01 Introduction and Overview/04_Factors_06-40.srt 8KB Lectures/Week 7 - 19 Learning- Parameter Estimation in MNs/03_MAP_Estimation_for_MRFs_and_CRFs_9-59.txt 8KB Lectures/Week 1 - 02 Bayesian Network Fundamentals/07_Application_-_Medical_Diagnosis_09-19.txt 8KB Lectures/Week 1 - 02 Bayesian Network Fundamentals/02_Reasoning_Patterns_09-59.txt 8KB Lectures/Week 8 - 20 Structure Learning/01_Structure_Learning_Overview_5-49.srt 8KB Assignments/Assignment 5/submit_input.mat 8KB Lectures/Week 1 - 04 ML-class Octave Tutorial/04_Plotting_Data_09-38.txt 8KB Lectures/Week 3 - 08 Inference-Variable Elimination/02_Overview-_MAP_Inference_09-42.txt 8KB Lectures/Week 1 - 02 Bayesian Network Fundamentals/06_Naive_Bayes_09-52.txt 8KB Assignments/Assignment 2/sendToSamiam.m 7KB Assignments/Assignment 7/Part2FullDataset.mat 7KB Lectures/Week 4 - 10 Inference-Belief Propagation Part 2/01_Properties_of_Belief_Propagation_9-31.txt 7KB Lectures/Week 6 - 16 ML-class Revision/05_Diagnosing_Bias_vs_Variance_07-42.txt 7KB Lectures/Week 1 - 01 Introduction and Overview/03_Distributions_04-56.srt 7KB Lectures/Week 2 - 05 Structured CPDs/01_Overview-_Structured_CPDs_08-00.txt 7KB Assignments/Assignment 1/FactorTutorial.m 6KB Lectures/Week 6 - 16 ML-class Revision/03_Evaluating_a_Hypothesis_07-35.txt 6KB Lectures/Week 2 - 06 Markov Network Fundamentals/07_Shared_Features_in_Log-Linear_Models_08-28.txt 6KB Lectures/Week 1 - 01 Introduction and Overview/01_Welcome_05-35.txt 6KB Lectures/Week 1 - 01 Introduction and Overview/04_Factors_06-40.txt 6KB Lectures/Week 2 - 06 Markov Network Fundamentals/04_Independencies_in_Markov_Networks_04-48.srt 5KB Assignments/Assignment 3/PA3TestCases.mat 5KB Lectures/Week 8 - 20 Structure Learning/01_Structure_Learning_Overview_5-49.txt 5KB Assignments/Assignment 5/MCMCInference.m 5KB Lectures/Week 4 - 11 Inference-MAP Estimation Part 1/02_Finding_a_MAP_Assignment_3-57.srt 5KB Assignments/Assignment 7/CliqueTreeCalibrate.m 5KB Assignments/Assignment 6/TestCases.m 5KB Lectures/Week 1 - 01 Introduction and Overview/03_Distributions_04-56.txt 5KB Assignments/Assignment 9/EM_HMM.m 5KB Lectures/Week 1 - 04 ML-class Octave Tutorial/07_Working_on_and_Submitting_Programming_Exercises_03-33.srt 5KB Assignments/Assignment 1/Credit_net.net 4KB Assignments/Assignment 2/sampleGeneticNetworks.m 4KB Assignments/Assignment 2/spinalMuscularAtrophyBayesNet.net 4KB Assignments/Assignment 7/Train2X.mat 4KB Assignments/Assignment 2/constructDecoupledGeneticNetwork.m 4KB Assignments/Assignment 7/Train1X.mat 4KB Assignments/Assignment 5/MHSWTrans.m 4KB Assignments/Assignment 1/ConvertNetwork.m 4KB Assignments/Assignment 7/Validation2X.mat 4KB Assignments/Assignment 7/Validation1X.mat 4KB Lectures/Week 2 - 06 Markov Network Fundamentals/04_Independencies_in_Markov_Networks_04-48.txt 4KB Assignments/Assignment 7/ComputeInitialPotentials.m 4KB Lectures/Week 4 - 11 Inference-MAP Estimation Part 1/02_Finding_a_MAP_Assignment_3-57.txt 4KB Assignments/Assignment 5/ClusterGraphCalibrate.m 3KB Assignments/Assignment 3/BuildOCRNetwork.m 3KB Assignments/Assignment 8/SamplePose.m 3KB Assignments/Assignment 2/phenotypeGivenCopiesFactor.m 3KB Assignments/Assignment 9/EM_cluster.m 3KB Assignments/Assignment 2/genotypeGivenParentsGenotypesFactor.m 3KB Assignments/Assignment 9/CliqueTreeCalibrate.m 3KB Lectures/Week 1 - 04 ML-class Octave Tutorial/07_Working_on_and_Submitting_Programming_Exercises_03-33.txt 3KB Assignments/Assignment 1/submit_input.mat 3KB Assignments/Assignment 2/genotypeGivenAlleleFreqsFactor.m 3KB Assignments/Assignment 2/constructGeneticNetwork.m 3KB Assignments/Assignment 7/InstanceNegLogLikelihood.m 3KB Assignments/Assignment 8/func_DrawLine.m 3KB Assignments/Assignment 9/func_DrawLine.m 3KB Assignments/Assignment 5/BlockLogDistribution.m 3KB Assignments/Assignment 2/constructSigmoidPhenotypeFactor.m 3KB Assignments/Assignment 2/childCopyGivenParentalsFactor.m 3KB Assignments/Assignment 5/VisualizeMCMCMarginals.m 2KB Assignments/Assignment 7/GenerateAllFeatures.m 2KB Assignments/Assignment 5/gaimc/scomponents.m 2KB Assignments/Assignment 9/CreateCliqueTreeHMM.m 2KB Assignments/Assignment 4/FactorProduct.m 2KB Assignments/Assignment 5/FactorProduct.m 2KB Assignments/Assignment 6/FactorProduct.m 2KB Assignments/Assignment 5/ComputeApproxMarginalsBP.m 2KB Assignments/Assignment 1/FactorProduct.m 2KB Assignments/Assignment 6/ObserveEvidence.m 2KB Assignments/Assignment 2/phenotypeGivenGenotypeMendelianFactor.m 2KB Assignments/Assignment 5/gaimc/sparse_to_csr.m 2KB Assignments/Assignment 7/ComputeExactMarginalsBP.m 2KB Assignments/Assignment 3/ScorePredictions.m 2KB Assignments/Assignment 4/CreateCliqueTree.m 2KB Assignments/Assignment 7/FactorSum.m 2KB Assignments/Assignment 4/ObserveEvidence.m 2KB Assignments/Assignment 5/ObserveEvidence.m 2KB Assignments/Assignment 7/FactorProduct.m 2KB Assignments/Assignment 5/ComputeInitialPotentials.m 2KB Assignments/Assignment 7/CreateCliqueTree.m 2KB Assignments/Assignment 8/MaxSpanningTree.m 2KB Assignments/Assignment 2/phenotypeGivenGenotypeFactor.m 2KB Assignments/Assignment 2/generateAlleleGenotypeMappers.m 2KB Assignments/Assignment 1/ObserveEvidence.m 2KB Assignments/Assignment 5/ConstructRandNetwork.m 2KB Assignments/Assignment 7/ObserveEvidence.m 2KB Assignments/Assignment 7/PruneTree.m 2KB Assignments/Assignment 5/ConstructToyNetwork.m 2KB Assignments/Assignment 4/CliqueTreeCalibrate.m 2KB Assignments/Assignment 4/PruneTree.m 2KB Assignments/Assignment 3/RunInference.m 2KB Assignments/Assignment 5/FactorMarginalization.m 2KB Assignments/Assignment 6/FactorMarginalization.m 2KB Assignments/Assignment 7/GetNextCliques.m 2KB Assignments/Assignment 4/FactorMaxMarginalization.m 2KB Assignments/Assignment 7/FactorMaxMarginalization.m 2KB Assignments/Assignment 4/FactorMarginalization.m 2KB Assignments/Assignment 5/TestToy.m 2KB Assignments/Assignment 7/Test1X.mat 2KB Assignments/Assignment 9/FitLG.m 2KB Assignments/Assignment 4/ComputeInitialPotentials.m 2KB Assignments/Assignment 9/ComputeExactMarginalsHMM.m 2KB Assignments/Assignment 1/FactorMarginalization.m 2KB Assignments/Assignment 7/FactorMarginalization.m 2KB Assignments/Assignment 5/CreateClusterGraph.m 2KB Assignments/Assignment 5/randsample.m 2KB Assignments/Assignment 6/OptimizeLinearExpectations.m 1KB Assignments/Assignment 7/LRCostSGD.m 1KB Assignments/Assignment 7/StochasticGradientDescent.m 1KB Assignments/Assignment 6/EliminateVar.m 1KB Assignments/Assignment 9/RecognizeActions.m 1KB Assignments/Assignment 8/ShowPose.m 1KB Assignments/Assignment 9/ShowPose.m 1KB Assignments/Assignment 4/GetNextCliques.m 1KB Assignments/Assignment 6/VariableElimination.m 1KB Assignments/Assignment 5/SmartGetNextClusters.m 1KB Assignments/Assignment 7/LRTrainSGD.m 1KB Assignments/Assignment 4/EliminateVar.m 1KB Assignments/Assignment 7/EliminateVar.m 1KB Assignments/Assignment 8/FitLinearGaussianParameters.m 1KB Assignments/Assignment 6/OptimizeMEU.m 1KB Assignments/Assignment 1/ComputeMarginal.m 1KB Assignments/Assignment 4/ComputeJointDistribution.m 1KB Assignments/Assignment 3/SerializeFactorsFg.m 1KB Assignments/Assignment 4/ComputeMarginal.m 1KB Assignments/Assignment 5/NaiveGetNextClusters.m 1KB Assignments/Assignment 3/ComputeWordPredictions.m 1KB Assignments/Assignment 4/SetValueOfAssignment.m 1KB Assignments/Assignment 6/SetValueOfAssignment.m 1KB Assignments/Assignment 3/ScoreModel.m 1KB Assignments/Assignment 5/CheckConvergence.m 1KB Assignments/Assignment 1/SetValueOfAssignment.m 1KB Assignments/Assignment 2/SetValueOfAssignment.m 1KB Assignments/Assignment 5/GetNextClusters.m 1KB Assignments/Assignment 2/sendToSamiamInfoDecoupled.m 1KB Assignments/Assignment 1/ComputeJointDistribution.m 1KB Assignments/Assignment 8/ComputeLogLikelihood.m 1KB Assignments/Assignment 7/LRSearchLambdaSGD.m 1KB Assignments/Assignment 5/ExtractMarginalsFromSamples.m 1KB Assignments/Assignment 6/OptimizeWithJointUtility.m 1KB Assignments/Assignment 6/SimpleCalcExpectedUtility.m 1KB Assignments/Assignment 4/ComputeExactMarginalsBP.m 1KB Assignments/Assignment 3/ComputeTripletFactors.m 1KB Assignments/Assignment 5/GibbsTrans.m 1018B Assignments/Assignment 8/LearnCPDsGivenGraph.m 1004B Assignments/Assignment 7/ComputeConditionedSingletonFeatures.m 998B Assignments/Assignment 8/LearnGraphAndCPDs.m 974B Assignments/Assignment 7/ComputeMarginal.m 973B Assignments/Assignment 3/ComputeSimilarityFactor.m 953B Assignments/Assignment 6/CalculateExpectedUtilityFactor.m 922B Assignments/Assignment 3/ComputePairwiseFactors.m 910B Assignments/Assignment 7/ComputeJointDistribution.m 906B Assignments/Assignment 6/MultipleUtilityI.mat 898B Assignments/Assignment 2/sendToSamiamInfo.m 887B Assignments/Assignment 7/VisualizeCharacters.m 884B Assignments/Assignment 5/SetValueOfAssignment.m 858B Assignments/Assignment 3/SetValueOfAssignment.m 856B Assignments/Assignment 6/FullI.mat 856B Assignments/Assignment 7/SetValueOfAssignment.m 856B Assignments/Assignment 6/TestI0.mat 855B Assignments/Assignment 6/NormalizeCPDFactors.m 845B Assignments/Assignment 3/ComputeSingletonFactors.m 841B Assignments/Assignment 4/GetValueOfAssignment.m 838B Assignments/Assignment 6/GetValueOfAssignment.m 838B Assignments/Assignment 5/GetValueOfAssignment.m 837B Assignments/Assignment 3/GetValueOfAssignment.m 835B Assignments/Assignment 6/SimpleOptimizeMEU.m 835B Assignments/Assignment 7/GetValueOfAssignment.m 834B Assignments/Assignment 3/ChooseTopSimilarityFactors.m 832B Assignments/Assignment 5/randi.m 832B Assignments/Assignment 1/submitWeb.m 829B Assignments/Assignment 4/MaxDecoding.m 825B Assignments/Assignment 9/FactorMarginalization.m 821B Assignments/Assignment 1/GetValueOfAssignment.m 806B Assignments/Assignment 2/GetValueOfAssignment.m 805B Assignments/Assignment 5/MHUniformTrans.m 785B Assignments/Assignment 6/CPDFromFactor.m 780B Assignments/Assignment 8/ClassifyDataset.m 751B Assignments/Assignment 7/ComputeUnconditionedPairFeatures.m 728B Assignments/Assignment 3/ImageSimilarity.m 708B Assignments/Assignment 8/LearnGraphStructure.m 708B Assignments/Assignment 3/ComputeImageFactor.m 696B Assignments/Assignment 3/VisualizeWord.m 696B Assignments/Assignment 2/childCopyGivenFreqsFactor.m 686B Assignments/Assignment 3/ComputeAllSimilarityFactors.m 673B Assignments/Assignment 7/MaxDecoding.m 659B Assignments/Assignment 7/LRAccuracy.m 658B Assignments/Assignment 3/AssignmentToIndex.m 652B Assignments/Assignment 3/ComputeEqualPairwiseFactors.m 647B Assignments/Assignment 4/IndexToAssignment.m 641B Assignments/Assignment 5/IndexToAssignment.m 641B Assignments/Assignment 6/IndexToAssignment.m 641B Assignments/Assignment 8/VisualizeModels.m 629B Assignments/Assignment 4/AssignmentToIndex.m 622B Assignments/Assignment 4/StandardizeFactors.m 621B Assignments/Assignment 6/AssignmentToIndex.m 621B Assignments/Assignment 5/AssignmentToIndex.m 619B Assignments/Assignment 7/ComputeUnconditionedSingletonFeatures.m 612B Assignments/Assignment 7/AssignmentToIndex.m 609B Assignments/Assignment 9/AssignmentToIndex.m 609B Assignments/Assignment 1/AssignmentToIndex.m 601B Assignments/Assignment 2/AssignmentToIndex.m 600B Assignments/Assignment 1/IndexToAssignment.m 599B Assignments/Assignment 2/IndexToAssignment.m 598B Assignments/Assignment 7/IndexToAssignment.m 587B Assignments/Assignment 9/IndexToAssignment.m 587B Assignments/Assignment 3/IndexToAssignment.m 585B Assignments/Assignment 5/MHGibbsTrans.m 583B Assignments/Assignment 1/StandardizeFactors.m 581B Assignments/Assignment 3/submitWeb.m 581B Assignments/Assignment 4/submitWeb.m 581B Assignments/Assignment 6/submitWeb.m 581B Assignments/Assignment 7/submitWeb.m 580B Assignments/Assignment 8/submitWeb.m 580B Assignments/Assignment 9/submitWeb.m 580B Assignments/Assignment 9/SavePredictions.m 575B Assignments/Assignment 9/lognormpdf.m 556B Assignments/Assignment 6/PrintFactor.m 526B Assignments/Assignment 2/submitWeb.m 523B Assignments/Assignment 7/LRPredict.m 514B Assignments/Assignment 8/ConvertAtoG.m 496B Assignments/Assignment 5/EdgeToFactorCorrespondence.m 482B Assignments/Assignment 5/rand.m 442B Assignments/Assignment 8/GaussianMutualInformation.m 442B Assignments/Assignment 2/sampleFactorListDecoupled.mat 440B Assignments/Assignment 5/smooth.m 431B Assignments/Assignment 2/sampleFactorList.mat 396B Assignments/Assignment 2/computeSigmoid.m 375B Assignments/Assignment 5/VisualizeToyImageMarginals.m 374B Assignments/Assignment 9/FitG.m 352B Assignments/Assignment 5/LogProbOfJointAssignment.m 341B Assignments/Assignment 9/logsumexp.m 341B Assignments/Assignment 7/NumParamsForConditionedFeatures.m 321B Assignments/Assignment 8/VisualizeDataset.m 316B Assignments/Assignment 8/SampleMultinomial.m 302B Assignments/Assignment 8/FitGaussianParameters.m 288B Assignments/Assignment 5/VariableToFactorCorrespondence.m 261B Assignments/Assignment 9/RecognizeUnknownActions.m 261B Assignments/Assignment 7/ValidationAccuracy.mat 251B Assignments/Assignment 9/VisualizeDataset.m 243B Assignments/Assignment 7/Train1Y.mat 237B Assignments/Assignment 7/Train2Y.mat 236B Assignments/Assignment 6/NormalizeFactorValues.m 234B Assignments/Assignment 8/SampleGaussian.m 232B Assignments/Assignment 7/NumParamsForUnconditionedFeatures.m 223B Assignments/Assignment 7/Part1Lambdas.mat 221B Assignments/Assignment 4/DecodedMarginalsToChars.m 218B Assignments/Assignment 7/EmptyFeatureStruct.m 195B Assignments/Assignment 7/Validation1Y.mat 191B Assignments/Assignment 7/Validation2Y.mat 191B Assignments/Assignment 7/EmptyFactorStruct.m 183B Assignments/Assignment 7/Test1Y.mat 182B Assignments/Assignment 8/lognormpdf.m 159B Assignments/Assignment 7/sigmoid.m 158B Assignments/Assignment 9/YourMethod.txt 65B