[] Udemy - Machine Learning A-Z™ Hands-On Python & R In Data Science 收录时间:2020-09-04 10:52:57 文件大小:6GB 下载次数:22 最近下载:2021-01-23 15:41:24 磁力链接: magnet:?xt=urn:btih:e856ffe88ac9036f6f9ff4831afcadf5d1d45518 立即下载 复制链接 文件列表 1. Welcome to the course!/6.1 Machine_Learning_A-Z_New.zip 228MB 36. Kernel PCA/3. Kernel PCA in R.mp4 57MB 1. Welcome to the course!/7. Updates on Udemy Reviews.mp4 53MB 39. XGBoost/5. THANK YOU bonus video.mp4 52MB 12. Logistic Regression/14. Logistic Regression in R - Step 5.mp4 52MB 35. Linear Discriminant Analysis (LDA)/4. LDA in R.mp4 51MB 17. Decision Tree Classification/4. Decision Tree Classification in R.mp4 51MB 18. Random Forest Classification/4. Random Forest Classification in R.mp4 49MB 31. Artificial Neural Networks/13. ANN in Python - Step 2.mp4 48MB 39. XGBoost/4. XGBoost in R.mp4 47MB 27. Upper Confidence Bound (UCB)/10. Upper Confidence Bound in R - Step 3.mp4 47MB 18. Random Forest Classification/3. Random Forest Classification in Python.mp4 47MB 32. Convolutional Neural Networks/20. CNN in Python - Step 9.mp4 47MB 7. Support Vector Regression (SVR)/2. SVR Intuition.mp4 47MB 7. Support Vector Regression (SVR)/3. SVR in Python.mp4 46MB 35. Linear Discriminant Analysis (LDA)/3. LDA in Python.mp4 45MB 8. Decision Tree Regression/4. Decision Tree Regression in R.mp4 44MB 16. Naive Bayes/1. Bayes Theorem.mp4 44MB 24. Apriori/5. Apriori in R - Step 3.mp4 44MB 38. Model Selection/3. k-Fold Cross Validation in R.mp4 44MB 6. Polynomial Regression/11. Polynomial Regression in R - Step 3.mp4 43MB 28. Thompson Sampling/4. Thompson Sampling in Python - Step 1.mp4 43MB 6. Polynomial Regression/6. Polynomial Regression in Python - Step 3.mp4 43MB 24. Apriori/3. Apriori in R - Step 1.mp4 43MB 32. Convolutional Neural Networks/7. Step 4 - Full Connection.mp4 43MB 12. Logistic Regression/7. Logistic Regression in Python - Step 5.mp4 43MB 15. Kernel SVM/6. Kernel SVM in Python.mp4 42MB 13. K-Nearest Neighbors (K-NN)/4. K-NN in R.mp4 41MB 29. Part 7 Natural Language Processing/24. Natural Language Processing in R - Step 10.mp4 41MB 27. Upper Confidence Bound (UCB)/6. Upper Confidence Bound in Python - Step 3.mp4 41MB 28. Thompson Sampling/6. Thompson Sampling in R - Step 1.mp4 41MB 2. Part 1 Data Preprocessing/7. Categorical Data.mp4 41MB 15. Kernel SVM/7. Kernel SVM in R.mp4 40MB 29. Part 7 Natural Language Processing/15. Natural Language Processing in R - Step 1.mp4 40MB 9. Random Forest Regression/4. Random Forest Regression in R.mp4 40MB 32. Convolutional Neural Networks/5. Step 2 - Pooling.mp4 40MB 21. K-Means Clustering/5. K-Means Clustering in Python.mp4 40MB 5. Multiple Linear Regression/19. Multiple Linear Regression in R - Backward Elimination - HOMEWORK !.mp4 40MB 5. Multiple Linear Regression/9. Multiple Linear Regression in Python - Step 1.mp4 40MB 29. Part 7 Natural Language Processing/11. Natural Language Processing in Python - Step 8.mp4 39MB 9. Random Forest Regression/3. Random Forest Regression in Python.mp4 39MB 2. Part 1 Data Preprocessing/9. Splitting the Dataset into the Training set and Test set.mp4 39MB 31. Artificial Neural Networks/22. ANN in R - Step 1.mp4 39MB 38. Model Selection/4. Grid Search in Python - Step 1.mp4 38MB 24. Apriori/6. Apriori in Python - Step 1.mp4 38MB 4. Simple Linear Regression/12. Simple Linear Regression in R - Step 4.mp4 37MB 16. Naive Bayes/7. Naive Bayes in R.mp4 37MB 28. Thompson Sampling/1. Thompson Sampling Intuition.mp4 37MB 34. Principal Component Analysis (PCA)/8. PCA in R - Step 3.mp4 37MB 38. Model Selection/6. Grid Search in R.mp4 36MB 27. Upper Confidence Bound (UCB)/5. Upper Confidence Bound in Python - Step 2.mp4 35MB 13. K-Nearest Neighbors (K-NN)/3. K-NN in Python.mp4 35MB 29. Part 7 Natural Language Processing/4. Natural Language Processing in Python - Step 1.mp4 35MB 24. Apriori/1. Apriori Intuition.mp4 35MB 2. Part 1 Data Preprocessing/10. Feature Scaling.mp4 35MB 8. Decision Tree Regression/3. Decision Tree Regression in Python.mp4 34MB 31. Artificial Neural Networks/25. ANN in R - Step 4 (Last step).mp4 33MB 36. Kernel PCA/2. Kernel PCA in Python.mp4 33MB 32. Convolutional Neural Networks/9. Softmax & Cross-Entropy.mp4 33MB 38. Model Selection/2. k-Fold Cross Validation in Python.mp4 33MB 5. Multiple Linear Regression/13. Multiple Linear Regression in Python - Backward Elimination - HOMEWORK !.mp4 33MB 14. Support Vector Machine (SVM)/4. SVM in R.mp4 32MB 2. Part 1 Data Preprocessing/6. Missing Data.mp4 32MB 34. Principal Component Analysis (PCA)/1. Principal Component Analysis (PCA) Intuition.mp4 32MB 39. XGBoost/3. XGBoost in Python - Step 2.mp4 32MB 34. Principal Component Analysis (PCA)/3. PCA in Python - Step 1.mp4 32MB 27. Upper Confidence Bound (UCB)/4. Upper Confidence Bound in Python - Step 1.mp4 32MB 30. Part 8 Deep Learning/2. What is Deep Learning.mp4 31MB 14. Support Vector Machine (SVM)/3. SVM in Python.mp4 31MB 32. Convolutional Neural Networks/3. Step 1 - Convolution Operation.mp4 31MB 4. Simple Linear Regression/8. Simple Linear Regression in Python - Step 4.mp4 31MB 34. Principal Component Analysis (PCA)/6. PCA in R - Step 1.mp4 31MB 24. Apriori/4. Apriori in R - Step 2.mp4 30MB 27. Upper Confidence Bound (UCB)/1. The Multi-Armed Bandit Problem.mp4 30MB 31. Artificial Neural Networks/2. The Neuron.mp4 30MB 17. Decision Tree Classification/3. Decision Tree Classification in Python.mp4 30MB 29. Part 7 Natural Language Processing/2. Natural Language Processing Intuition.mp4 30MB 31. Artificial Neural Networks/16. ANN in Python - Step 5.mp4 30MB 24. Apriori/7. Apriori in Python - Step 2.mp4 30MB 38. Model Selection/5. Grid Search in Python - Step 2.mp4 30MB 32. Convolutional Neural Networks/2. What are convolutional neural networks.mp4 29MB 27. Upper Confidence Bound (UCB)/2. Upper Confidence Bound (UCB) Intuition.mp4 29MB 31. Artificial Neural Networks/12. ANN in Python - Step 1.mp4 29MB 15. Kernel SVM/3. The Kernel Trick.mp4 29MB 12. Logistic Regression/1. Logistic Regression Intuition.mp4 29MB 34. Principal Component Analysis (PCA)/7. PCA in R - Step 2.mp4 29MB 27. Upper Confidence Bound (UCB)/9. Upper Confidence Bound in R - Step 2.mp4 29MB 21. K-Means Clustering/6. K-Means Clustering in R.mp4 29MB 29. Part 7 Natural Language Processing/23. Natural Language Processing in R - Step 9.mp4 29MB 31. Artificial Neural Networks/24. ANN in R - Step 3.mp4 29MB 5. Multiple Linear Regression/8. Multiple Linear Regression Intuition - Step 5.mp4 29MB 27. Upper Confidence Bound (UCB)/8. Upper Confidence Bound in R - Step 1.mp4 28MB 16. Naive Bayes/2. Naive Bayes Intuition.mp4 28MB 6. Polynomial Regression/8. Python Regression Template.mp4 27MB 32. Convolutional Neural Networks/15. CNN in Python - Step 4.mp4 27MB 5. Multiple Linear Regression/14. Multiple Linear Regression in Python - Backward Elimination - Homework Solution.mp4 27MB 6. Polynomial Regression/5. Polynomial Regression in Python - Step 2.mp4 27MB 35. Linear Discriminant Analysis (LDA)/1. Linear Discriminant Analysis (LDA) Intuition.mp4 27MB 24. Apriori/8. Apriori in Python - Step 3.mp4 27MB 21. K-Means Clustering/1. K-Means Clustering Intuition.mp4 27MB 31. Artificial Neural Networks/5. How do Neural Networks learn.mp4 27MB 5. Multiple Linear Regression/17. Multiple Linear Regression in R - Step 2.mp4 26MB 7. Support Vector Regression (SVR)/4. SVR in R.mp4 26MB 34. Principal Component Analysis (PCA)/5. PCA in Python - Step 3.mp4 26MB 6. Polynomial Regression/13. R Regression Template.mp4 25MB 32. Convolutional Neural Networks/12. CNN in Python - Step 1.mp4 25MB 6. Polynomial Regression/4. Polynomial Regression in Python - Step 1.mp4 25MB 10. Evaluating Regression Models Performance/4. Interpreting Linear Regression Coefficients.mp4 24MB 29. Part 7 Natural Language Processing/13. Natural Language Processing in Python - Step 10.mp4 24MB 29. Part 7 Natural Language Processing/7. Natural Language Processing in Python - Step 4.mp4 24MB 6. Polynomial Regression/10. Polynomial Regression in R - Step 2.mp4 24MB 5. Multiple Linear Regression/12. Multiple Linear Regression in Python - Backward Elimination - Preparation.mp4 24MB 31. Artificial Neural Networks/4. How do Neural Networks work.mp4 24MB 16. Naive Bayes/6. Naive Bayes in Python.mp4 23MB 2. Part 1 Data Preprocessing/4. Importing the Dataset.mp4 23MB 21. K-Means Clustering/3. K-Means Selecting The Number Of Clusters.mp4 23MB 22. Hierarchical Clustering/3. Hierarchical Clustering Using Dendrograms.mp4 23MB 8. Decision Tree Regression/1. Decision Tree Regression Intuition.mp4 23MB 6. Polynomial Regression/12. Polynomial Regression in R - Step 4.mp4 22MB 34. Principal Component Analysis (PCA)/4. PCA in Python - Step 2.mp4 22MB 29. Part 7 Natural Language Processing/5. Natural Language Processing in Python - Step 2.mp4 22MB 10. Evaluating Regression Models Performance/3. Evaluating Regression Models Performance - Homework's Final Part.mp4 22MB 4. Simple Linear Regression/5. Simple Linear Regression in Python - Step 1.mp4 22MB 39. XGBoost/2. XGBoost in Python - Step 1.mp4 21MB 2. Part 1 Data Preprocessing/2. Get the dataset.mp4 21MB 25. Eclat/3. Eclat in R.mp4 21MB 32. Convolutional Neural Networks/21. CNN in Python - Step 10.mp4 21MB 2. Part 1 Data Preprocessing/11. And here is our Data Preprocessing Template!.mp4 20MB 1. Welcome to the course!/8. Installing Python and Anaconda (Mac, Linux & Windows).mp4 20MB 18. Random Forest Classification/1. Random Forest Classification Intuition.mp4 19MB 10. Evaluating Regression Models Performance/2. Adjusted R-Squared Intuition.mp4 19MB 16. Naive Bayes/4. Naive Bayes Intuition (Extras).mp4 19MB 17. Decision Tree Classification/1. Decision Tree Classification Intuition.mp4 19MB 4. Simple Linear Regression/6. Simple Linear Regression in Python - Step 2.mp4 19MB 19. Evaluating Classification Models Performance/4. CAP Curve.mp4 19MB 31. Artificial Neural Networks/6. Gradient Descent.mp4 19MB 31. Artificial Neural Networks/19. ANN in Python - Step 8.mp4 18MB 14. Support Vector Machine (SVM)/1. SVM Intuition.mp4 18MB 5. Multiple Linear Regression/16. Multiple Linear Regression in R - Step 1.mp4 18MB 6. Polynomial Regression/9. Polynomial Regression in R - Step 1.mp4 18MB 1. Welcome to the course!/10. Installing R and R Studio (Mac, Linux & Windows).mp4 18MB 29. Part 7 Natural Language Processing/16. Natural Language Processing in R - Step 2.mp4 17MB 22. Hierarchical Clustering/2. Hierarchical Clustering How Dendrograms Work.mp4 17MB 5. Multiple Linear Regression/20. Multiple Linear Regression in R - Backward Elimination - Homework Solution.mp4 17MB 29. Part 7 Natural Language Processing/10. Natural Language Processing in Python - Step 7.mp4 17MB 31. Artificial Neural Networks/21. ANN in Python - Step 10.mp4 17MB 31. Artificial Neural Networks/20. ANN in Python - Step 9.mp4 17MB 31. Artificial Neural Networks/7. Stochastic Gradient Descent.mp4 17MB 22. Hierarchical Clustering/1. Hierarchical Clustering Intuition.mp4 17MB 31. Artificial Neural Networks/10. Business Problem Description.mp4 16MB 4. Simple Linear Regression/7. Simple Linear Regression in Python - Step 3.mp4 16MB 21. K-Means Clustering/2. K-Means Random Initialization Trap.mp4 15MB 29. Part 7 Natural Language Processing/8. Natural Language Processing in Python - Step 5.mp4 15MB 31. Artificial Neural Networks/3. The Activation Function.mp4 15MB 12. Logistic Regression/11. Logistic Regression in R - Step 3.mp4 15MB 4. Simple Linear Regression/10. Simple Linear Regression in R - Step 2.mp4 14MB 5. Multiple Linear Regression/11. Multiple Linear Regression in Python - Step 3.mp4 14MB 5. Multiple Linear Regression/5. Multiple Linear Regression Intuition - Step 3.mp4 14MB 31. Artificial Neural Networks/23. ANN in R - Step 2.mp4 14MB 32. Convolutional Neural Networks/4. Step 1(b) - ReLU Layer.mp4 14MB 28. Thompson Sampling/2. Algorithm Comparison UCB vs Thompson Sampling.mp4 14MB 29. Part 7 Natural Language Processing/12. Natural Language Processing in Python - Step 9.mp4 14MB 9. Random Forest Regression/1. Random Forest Regression Intuition.mp4 14MB 15. Kernel SVM/2. Mapping to a higher dimension.mp4 14MB 19. Evaluating Classification Models Performance/1. False Positives & False Negatives.mp4 14MB 29. Part 7 Natural Language Processing/17. Natural Language Processing in R - Step 3.mp4 14MB 6. Polynomial Regression/7. Polynomial Regression in Python - Step 4.mp4 14MB 16. Naive Bayes/3. Naive Bayes Intuition (Challenge Reveal).mp4 13MB 29. Part 7 Natural Language Processing/22. Natural Language Processing in R - Step 8.mp4 13MB 32. Convolutional Neural Networks/18. CNN in Python - Step 7.mp4 13MB 12. Logistic Regression/3. Logistic Regression in Python - Step 1.mp4 13MB 1. Welcome to the course!/3. Why Machine Learning is the Future.mp4 13MB 29. Part 7 Natural Language Processing/20. Natural Language Processing in R - Step 6.mp4 13MB 22. Hierarchical Clustering/6. HC in Python - Step 2.mp4 13MB 12. Logistic Regression/9. Logistic Regression in R - Step 1.mp4 13MB 12. Logistic Regression/15. R Classification Template.mp4 12MB 15. Kernel SVM/4. Types of Kernel Functions.mp4 12MB 22. Hierarchical Clustering/7. HC in Python - Step 3.mp4 12MB 12. Logistic Regression/8. Python Classification Template.mp4 12MB 22. Hierarchical Clustering/8. HC in Python - Step 4.mp4 12MB 16. Naive Bayes/5. How to get the dataset.mp4 12MB 18. Random Forest Classification/2. How to get the dataset.mp4 12MB 21. K-Means Clustering/4. How to get the dataset.mp4 12MB 22. Hierarchical Clustering/4. How to get the dataset.mp4 12MB 31. Artificial Neural Networks/9. How to get the dataset.mp4 12MB 32. Convolutional Neural Networks/10. How to get the dataset.mp4 12MB 38. Model Selection/1. How to get the dataset.mp4 12MB 4. Simple Linear Regression/1. How to get the dataset.mp4 12MB 9. Random Forest Regression/2. How to get the dataset.mp4 12MB 12. Logistic Regression/2. How to get the dataset.mp4 12MB 13. K-Nearest Neighbors (K-NN)/2. How to get the dataset.mp4 12MB 14. Support Vector Machine (SVM)/2. How to get the dataset.mp4 12MB 15. Kernel SVM/5. How to get the dataset.mp4 12MB 17. Decision Tree Classification/2. How to get the dataset.mp4 12MB 24. Apriori/2. How to get the dataset.mp4 12MB 25. Eclat/2. How to get the dataset.mp4 12MB 27. Upper Confidence Bound (UCB)/3. How to get the dataset.mp4 12MB 28. Thompson Sampling/3. How to get the dataset.mp4 12MB 29. Part 7 Natural Language Processing/3. How to get the dataset.mp4 12MB 34. Principal Component Analysis (PCA)/2. How to get the dataset.mp4 12MB 35. Linear Discriminant Analysis (LDA)/2. How to get the dataset.mp4 12MB 36. Kernel PCA/1. How to get the dataset.mp4 12MB 39. XGBoost/1. How to get the dataset.mp4 12MB 5. Multiple Linear Regression/1. How to get the dataset.mp4 12MB 6. Polynomial Regression/2. How to get the dataset.mp4 12MB 7. Support Vector Regression (SVR)/1. How to get the dataset.mp4 12MB 8. Decision Tree Regression/2. How to get the dataset.mp4 12MB 19. Evaluating Classification Models Performance/5. CAP Curve Analysis.mp4 12MB 22. Hierarchical Clustering/11. HC in R - Step 2.mp4 11MB 2. Part 1 Data Preprocessing/3. Importing the Libraries.mp4 11MB 31. Artificial Neural Networks/8. Backpropagation.mp4 11MB 22. Hierarchical Clustering/5. HC in Python - Step 1.mp4 11MB 25. Eclat/1. Eclat Intuition.mp4 11MB 5. Multiple Linear Regression/18. Multiple Linear Regression in R - Step 3.mp4 10MB 12. Logistic Regression/6. Logistic Regression in Python - Step 4.mp4 10MB 5. Multiple Linear Regression/2. Dataset + Business Problem Description.mp4 10MB 32. Convolutional Neural Networks/16. CNN in Python - Step 5.mp4 10MB 32. Convolutional Neural Networks/17. CNN in Python - Step 6.mp4 10MB 4. Simple Linear Regression/9. Simple Linear Regression in R - Step 1.mp4 10MB 4. Simple Linear Regression/3. Simple Linear Regression Intuition - Step 1.mp4 9MB 6. Polynomial Regression/1. Polynomial Regression Intuition.mp4 9MB 13. K-Nearest Neighbors (K-NN)/1. K-Nearest Neighbor Intuition.mp4 9MB 27. Upper Confidence Bound (UCB)/7. Upper Confidence Bound in Python - Step 4.mp4 9MB 31. Artificial Neural Networks/18. ANN in Python - Step 7.mp4 9MB 10. Evaluating Regression Models Performance/1. R-Squared Intuition.mp4 9MB 4. Simple Linear Regression/11. Simple Linear Regression in R - Step 3.mp4 9MB 28. Thompson Sampling/5. Thompson Sampling in Python - Step 2.mp4 8MB 22. Hierarchical Clustering/9. HC in Python - Step 5.mp4 8MB 31. Artificial Neural Networks/14. ANN in Python - Step 3.mp4 8MB 12. Logistic Regression/4. Logistic Regression in Python - Step 2.mp4 8MB 19. Evaluating Classification Models Performance/2. Confusion Matrix.mp4 8MB 1. Welcome to the course!/1. Applications of Machine Learning.mp4 8MB 32. Convolutional Neural Networks/8. Summary.mp4 8MB 12. Logistic Regression/10. Logistic Regression in R - Step 2.mp4 8MB 22. Hierarchical Clustering/12. HC in R - Step 3.mp4 8MB 29. Part 7 Natural Language Processing/21. Natural Language Processing in R - Step 7.mp4 8MB 28. Thompson Sampling/7. Thompson Sampling in R - Step 2.mp4 7MB 22. Hierarchical Clustering/13. HC in R - Step 4.mp4 7MB 27. Upper Confidence Bound (UCB)/11. Upper Confidence Bound in R - Step 4.mp4 7MB 22. Hierarchical Clustering/10. HC in R - Step 1.mp4 7MB 5. Multiple Linear Regression/10. Multiple Linear Regression in Python - Step 2.mp4 7MB 31. Artificial Neural Networks/17. ANN in Python - Step 6.mp4 7MB 12. Logistic Regression/12. Logistic Regression in R - Step 4.mp4 7MB 22. Hierarchical Clustering/14. HC in R - Step 5.mp4 7MB 32. Convolutional Neural Networks/19. CNN in Python - Step 8.mp4 7MB 4. Simple Linear Regression/2. Dataset + Business Problem Description.mp4 7MB 29. Part 7 Natural Language Processing/18. Natural Language Processing in R - Step 4.mp4 6MB 29. Part 7 Natural Language Processing/9. Natural Language Processing in Python - Step 6.mp4 6MB 12. Logistic Regression/5. Logistic Regression in Python - Step 3.mp4 6MB 32. Convolutional Neural Networks/1. Plan of attack.mp4 6MB 31. Artificial Neural Networks/15. ANN in Python - Step 4.mp4 6MB 32. Convolutional Neural Networks/13. CNN in Python - Step 2.mp4 6MB 15. Kernel SVM/1. Kernel SVM Intuition.mp4 6MB 4. Simple Linear Regression/4. Simple Linear Regression Intuition - Step 2.mp4 5MB 31. Artificial Neural Networks/1. Plan of attack.mp4 5MB 29. Part 7 Natural Language Processing/19. Natural Language Processing in R - Step 5.mp4 5MB 5. Multiple Linear Regression/6. Multiple Linear Regression Intuition - Step 4.mp4 5MB 19. Evaluating Classification Models Performance/3. Accuracy Paradox.mp4 4MB 29. Part 7 Natural Language Processing/6. Natural Language Processing in Python - Step 3.mp4 3MB 32. Convolutional Neural Networks/6. Step 3 - Flattening.mp4 3MB 2. Part 1 Data Preprocessing/1. Welcome to Part 1 - Data Preprocessing.mp4 3MB 1. Welcome to the course!/5.1 Machine_Learning_A_Z_Q_A.pdf 2MB 32. Convolutional Neural Networks/14. CNN in Python - Step 3.mp4 2MB 5. Multiple Linear Regression/3. Multiple Linear Regression Intuition - Step 1.mp4 2MB 5. Multiple Linear Regression/4. Multiple Linear Regression Intuition - Step 2.mp4 2MB 25. Eclat/3.1 Eclat.zip 49KB 16. Naive Bayes/1. Bayes Theorem.srt 34KB 18. Random Forest Classification/4. Random Forest Classification in R.srt 32KB 8. Decision Tree Regression/4. Decision Tree Regression in R.srt 32KB 6. Polynomial Regression/6. Polynomial Regression in Python - Step 3.srt 31KB 24. Apriori/5. Apriori in R - Step 3.srt 31KB 24. Apriori/3. Apriori in R - Step 1.srt 31KB 7. Support Vector Regression (SVR)/3. SVR in Python.srt 31KB 6. Polynomial Regression/11. Polynomial Regression in R - Step 3.srt 31KB 36. Kernel PCA/3. Kernel PCA in R.srt 31KB 18. Random Forest Classification/3. Random Forest Classification in Python.srt 31KB 12. Logistic Regression/7. Logistic Regression in Python - Step 5.srt 30KB 35. Linear Discriminant Analysis (LDA)/4. LDA in R.srt 30KB 32. Convolutional Neural Networks/20. CNN in Python - Step 9.srt 29KB 17. Decision Tree Classification/4. Decision Tree Classification in R.srt 29KB 12. Logistic Regression/14. Logistic Regression in R - Step 5.srt 29KB 31. Artificial Neural Networks/13. ANN in Python - Step 2.srt 29KB 28. Thompson Sampling/4. Thompson Sampling in Python - Step 1.srt 29KB 32. Convolutional Neural Networks/7. Step 4 - Full Connection.srt 29KB 15. Kernel SVM/6. Kernel SVM in Python.srt 28KB 21. K-Means Clustering/5. K-Means Clustering in Python.srt 28KB 9. Random Forest Regression/4. Random Forest Regression in R.srt 28KB 24. Apriori/6. Apriori in Python - Step 1.srt 28KB 38. Model Selection/3. k-Fold Cross Validation in R.srt 28KB 28. Thompson Sampling/6. Thompson Sampling in R - Step 1.srt 28KB 9. Random Forest Regression/3. Random Forest Regression in Python.srt 28KB 28. Thompson Sampling/1. Thompson Sampling Intuition.srt 28KB 5. Multiple Linear Regression/19. Multiple Linear Regression in R - Backward Elimination - HOMEWORK !.srt 27KB 2. Part 1 Data Preprocessing/7. Categorical Data.srt 27KB 27. Upper Confidence Bound (UCB)/6. Upper Confidence Bound in Python - Step 3.srt 27KB 2. Part 1 Data Preprocessing/9. Splitting the Dataset into the Training set and Test set.srt 27KB 31. Artificial Neural Networks/22. ANN in R - Step 1.srt 27KB 35. Linear Discriminant Analysis (LDA)/3. LDA in Python.srt 27KB 29. Part 7 Natural Language Processing/24. Natural Language Processing in R - Step 10.srt 26KB 39. XGBoost/4. XGBoost in R.srt 26KB 24. Apriori/1. Apriori Intuition.srt 26KB 22. Hierarchical Clustering/16.1 Clustering-Pros-Cons.pdf 26KB 15. Kernel SVM/7. Kernel SVM in R.srt 25KB 27. Upper Confidence Bound (UCB)/10. Upper Confidence Bound in R - Step 3.srt 25KB 32. Convolutional Neural Networks/9. Softmax & Cross-Entropy.srt 25KB 27. Upper Confidence Bound (UCB)/5. Upper Confidence Bound in Python - Step 2.srt 25KB 31. Artificial Neural Networks/2. The Neuron.srt 25KB 5. Multiple Linear Regression/9. Multiple Linear Regression in Python - Step 1.srt 24KB 29. Part 7 Natural Language Processing/15. Natural Language Processing in R - Step 1.srt 24KB 12. Logistic Regression/1. Logistic Regression Intuition.srt 24KB 4. Simple Linear Regression/12. Simple Linear Regression in R - Step 4.srt 24KB 29. Part 7 Natural Language Processing/11. Natural Language Processing in Python - Step 8.srt 24KB 8. Decision Tree Regression/3. Decision Tree Regression in Python.srt 24KB 5. Multiple Linear Regression/8. Multiple Linear Regression Intuition - Step 5.srt 24KB 2. Part 1 Data Preprocessing/10. Feature Scaling.srt 23KB 13. K-Nearest Neighbors (K-NN)/4. K-NN in R.srt 23KB 21. K-Means Clustering/1. K-Means Clustering Intuition.srt 23KB 16. Naive Bayes/2. Naive Bayes Intuition.srt 23KB 32. Convolutional Neural Networks/3. Step 1 - Convolution Operation.srt 23KB 24. Apriori/4. Apriori in R - Step 2.srt 23KB 2. Part 1 Data Preprocessing/6. Missing Data.srt 23KB 24. Apriori/7. Apriori in Python - Step 2.srt 23KB 4. Simple Linear Regression/8. Simple Linear Regression in Python - Step 4.srt 22KB 27. Upper Confidence Bound (UCB)/1. The Multi-Armed Bandit Problem.srt 22KB 27. Upper Confidence Bound (UCB)/9. Upper Confidence Bound in R - Step 2.srt 22KB 32. Convolutional Neural Networks/2. What are convolutional neural networks.srt 22KB 38. Model Selection/4. Grid Search in Python - Step 1.srt 22KB 27. Upper Confidence Bound (UCB)/2. Upper Confidence Bound (UCB) Intuition.srt 22KB 16. Naive Bayes/7. Naive Bayes in R.srt 22KB 27. Upper Confidence Bound (UCB)/4. Upper Confidence Bound in Python - Step 1.srt 22KB 36. Kernel PCA/2. Kernel PCA in Python.srt 21KB 13. K-Nearest Neighbors (K-NN)/3. K-NN in Python.srt 21KB 32. Convolutional Neural Networks/5. Step 2 - Pooling.srt 21KB 38. Model Selection/6. Grid Search in R.srt 21KB 31. Artificial Neural Networks/25. ANN in R - Step 4 (Last step).srt 21KB 27. Upper Confidence Bound (UCB)/8. Upper Confidence Bound in R - Step 1.srt 21KB 38. Model Selection/2. k-Fold Cross Validation in Python.srt 20KB 31. Artificial Neural Networks/12. ANN in Python - Step 1.srt 20KB 34. Principal Component Analysis (PCA)/8. PCA in R - Step 3.srt 20KB 5. Multiple Linear Regression/13. Multiple Linear Regression in Python - Backward Elimination - HOMEWORK !.srt 20KB 29. Part 7 Natural Language Processing/23. Natural Language Processing in R - Step 9.srt 20KB 24. Apriori/8. Apriori in Python - Step 3.srt 20KB 31. Artificial Neural Networks/16. ANN in Python - Step 5.srt 19KB 21. K-Means Clustering/6. K-Means Clustering in R.srt 19KB 17. Decision Tree Classification/3. Decision Tree Classification in Python.srt 19KB 32. Convolutional Neural Networks/15. CNN in Python - Step 4.srt 19KB 14. Support Vector Machine (SVM)/3. SVM in Python.srt 19KB 31. Artificial Neural Networks/4. How do Neural Networks work.srt 19KB 31. Artificial Neural Networks/5. How do Neural Networks learn.srt 19KB 39. XGBoost/3. XGBoost in Python - Step 2.srt 19KB 31. Artificial Neural Networks/24. ANN in R - Step 3.srt 19KB 34. Principal Component Analysis (PCA)/6. PCA in R - Step 1.srt 19KB 7. Support Vector Regression (SVR)/4. SVR in R.srt 19KB 2. Part 1 Data Preprocessing/4. Importing the Dataset.srt 19KB 6. Polynomial Regression/13. R Regression Template.srt 19KB 21. K-Means Clustering/3. K-Means Selecting The Number Of Clusters.srt 18KB 14. Support Vector Machine (SVM)/4. SVM in R.srt 18KB 32. Convolutional Neural Networks/12. CNN in Python - Step 1.srt 18KB 29. Part 7 Natural Language Processing/4. Natural Language Processing in Python - Step 1.srt 18KB 30. Part 8 Deep Learning/2. What is Deep Learning.srt 18KB 34. Principal Component Analysis (PCA)/3. PCA in Python - Step 1.srt 18KB 22. Hierarchical Clustering/3. Hierarchical Clustering Using Dendrograms.srt 18KB 6. Polynomial Regression/4. Polynomial Regression in Python - Step 1.srt 17KB 29. Part 7 Natural Language Processing/7. Natural Language Processing in Python - Step 4.srt 17KB 6. Polynomial Regression/5. Polynomial Regression in Python - Step 2.srt 17KB 8. Decision Tree Regression/1. Decision Tree Regression Intuition.srt 17KB 34. Principal Component Analysis (PCA)/7. PCA in R - Step 2.srt 17KB 15. Kernel SVM/3. The Kernel Trick.srt 17KB 6. Polynomial Regression/8. Python Regression Template.srt 16KB 19. Evaluating Classification Models Performance/4. CAP Curve.srt 16KB 16. Naive Bayes/4. Naive Bayes Intuition (Extras).srt 16KB 29. Part 7 Natural Language Processing/5. Natural Language Processing in Python - Step 2.srt 16KB 25. Eclat/3. Eclat in R.srt 16KB 14. Support Vector Machine (SVM)/1. SVM Intuition.srt 16KB 4. Simple Linear Regression/5. Simple Linear Regression in Python - Step 1.srt 15KB 6. Polynomial Regression/12. Polynomial Regression in R - Step 4.srt 15KB 5. Multiple Linear Regression/17. Multiple Linear Regression in R - Step 2.srt 15KB 38. Model Selection/5. Grid Search in Python - Step 2.srt 15KB 6. Polynomial Regression/10. Polynomial Regression in R - Step 2.srt 15KB 5. Multiple Linear Regression/12. Multiple Linear Regression in Python - Backward Elimination - Preparation.srt 15KB 34. Principal Component Analysis (PCA)/5. PCA in Python - Step 3.srt 15KB 22. Hierarchical Clustering/1. Hierarchical Clustering Intuition.srt 15KB 10. Evaluating Regression Models Performance/2. Adjusted R-Squared Intuition.srt 14KB 29. Part 7 Natural Language Processing/13. Natural Language Processing in Python - Step 10.srt 14KB 22. Hierarchical Clustering/2. Hierarchical Clustering How Dendrograms Work.srt 14KB 5. Multiple Linear Regression/14. Multiple Linear Regression in Python - Backward Elimination - Homework Solution.srt 14KB 2. Part 1 Data Preprocessing/11. And here is our Data Preprocessing Template!.srt 14KB 6. Polynomial Regression/9. Polynomial Regression in R - Step 1.srt 14KB 31. Artificial Neural Networks/6. Gradient Descent.srt 14KB 16. Naive Bayes/6. Naive Bayes in Python.srt 14KB 39. XGBoost/2. XGBoost in Python - Step 1.srt 14KB 10. Evaluating Regression Models Performance/4. Interpreting Linear Regression Coefficients.srt 13KB 32. Convolutional Neural Networks/21. CNN in Python - Step 10.srt 13KB 21. K-Means Clustering/2. K-Means Random Initialization Trap.srt 13KB 10. Evaluating Regression Models Performance/3. Evaluating Regression Models Performance - Homework's Final Part.srt 13KB 29. Part 7 Natural Language Processing/16. Natural Language Processing in R - Step 2.srt 13KB 17. Decision Tree Classification/1. Decision Tree Classification Intuition.srt 13KB 4. Simple Linear Regression/6. Simple Linear Regression in Python - Step 2.srt 12KB 1. Welcome to the course!/8. Installing Python and Anaconda (Mac, Linux & Windows).srt 12KB 31. Artificial Neural Networks/7. Stochastic Gradient Descent.srt 12KB 31. Artificial Neural Networks/3. The Activation Function.srt 12KB 5. Multiple Linear Regression/20. Multiple Linear Regression in R - Backward Elimination - Homework Solution.srt 12KB 5. Multiple Linear Regression/16. Multiple Linear Regression in R - Step 1.srt 12KB 34. Principal Component Analysis (PCA)/4. PCA in Python - Step 2.srt 12KB 7. Support Vector Regression (SVR)/2. SVR Intuition.srt 11KB 19. Evaluating Classification Models Performance/1. False Positives & False Negatives.srt 11KB 28. Thompson Sampling/2. Algorithm Comparison UCB vs Thompson Sampling.srt 11KB 31. Artificial Neural Networks/19. ANN in Python - Step 8.srt 11KB 5. Multiple Linear Regression/5. Multiple Linear Regression Intuition - Step 3.srt 11KB 2. Part 1 Data Preprocessing/2. Get the dataset.srt 11KB 29. Part 7 Natural Language Processing/8. Natural Language Processing in Python - Step 5.srt 11KB 15. Kernel SVM/2. Mapping to a higher dimension.srt 11KB 31. Artificial Neural Networks/21. ANN in Python - Step 10.srt 10KB 9. Random Forest Regression/1. Random Forest Regression Intuition.srt 10KB 29. Part 7 Natural Language Processing/17. Natural Language Processing in R - Step 3.srt 10KB 31. Artificial Neural Networks/23. ANN in R - Step 2.srt 10KB 4. Simple Linear Regression/7. Simple Linear Regression in Python - Step 3.srt 10KB 29. Part 7 Natural Language Processing/10. Natural Language Processing in Python - Step 7.srt 10KB 22. Hierarchical Clustering/6. HC in Python - Step 2.srt 10KB 31. Artificial Neural Networks/20. ANN in Python - Step 9.srt 10KB 16. Naive Bayes/3. Naive Bayes Intuition (Challenge Reveal).srt 9KB 19. Evaluating Classification Models Performance/5. CAP Curve Analysis.srt 9KB 1. Welcome to the course!/3. Why Machine Learning is the Future.srt 9KB 32. Convolutional Neural Networks/4. Step 1(b) - ReLU Layer.srt 9KB 1. Welcome to the course!/10. Installing R and R Studio (Mac, Linux & Windows).srt 9KB 32. Convolutional Neural Networks/18. CNN in Python - Step 7.srt 9KB 12. Logistic Regression/9. Logistic Regression in R - Step 1.srt 9KB 4. Simple Linear Regression/10. Simple Linear Regression in R - Step 2.srt 9KB 12. Logistic Regression/3. Logistic Regression in Python - Step 1.srt 9KB 6. Polynomial Regression/7. Polynomial Regression in Python - Step 4.srt 9KB 29. Part 7 Natural Language Processing/20. Natural Language Processing in R - Step 6.srt 8KB 4. Simple Linear Regression/3. Simple Linear Regression Intuition - Step 1.srt 8KB 5. Multiple Linear Regression/11. Multiple Linear Regression in Python - Step 3.srt 8KB 14. Support Vector Machine (SVM)/4.1 SVM.zip 8KB 29. Part 7 Natural Language Processing/12. Natural Language Processing in Python - Step 9.srt 8KB 22. Hierarchical Clustering/11. HC in R - Step 2.srt 8KB 25. Eclat/1. Eclat Intuition.srt 8KB 2. Part 1 Data Preprocessing/3. Importing the Libraries.srt 8KB 13. K-Nearest Neighbors (K-NN)/1. K-Nearest Neighbor Intuition.srt 8KB 29. Part 7 Natural Language Processing/22. Natural Language Processing in R - Step 8.srt 8KB 6. Polynomial Regression/1. Polynomial Regression Intuition.srt 8KB 22. Hierarchical Clustering/7. HC in Python - Step 3.srt 8KB 4. Simple Linear Regression/9. Simple Linear Regression in R - Step 1.srt 8KB 32. Convolutional Neural Networks/17. CNN in Python - Step 6.srt 8KB 22. Hierarchical Clustering/5. HC in Python - Step 1.srt 8KB 19. Evaluating Classification Models Performance/2. Confusion Matrix.srt 8KB 32. Convolutional Neural Networks/16. CNN in Python - Step 5.srt 7KB 12. Logistic Regression/11. Logistic Regression in R - Step 3.srt 7KB 31. Artificial Neural Networks/10. Business Problem Description.srt 7KB 10. Evaluating Regression Models Performance/1. R-Squared Intuition.srt 7KB 12. Logistic Regression/6. Logistic Regression in Python - Step 4.srt 7KB 31. Artificial Neural Networks/8. Backpropagation.srt 7KB 29. Part 7 Natural Language Processing/2. Natural Language Processing Intuition.srt 7KB 5. Multiple Linear Regression/18. Multiple Linear Regression in R - Step 3.srt 7KB 18. Random Forest Classification/1. Random Forest Classification Intuition.srt 7KB 22. Hierarchical Clustering/9. HC in Python - Step 5.srt 7KB 12. Logistic Regression/15. R Classification Template.srt 7KB 22. Hierarchical Clustering/8. HC in Python - Step 4.srt 6KB 22. Hierarchical Clustering/10. HC in R - Step 1.srt 6KB 12. Logistic Regression/8. Python Classification Template.srt 6KB 32. Convolutional Neural Networks/8. Summary.srt 6KB 28. Thompson Sampling/5. Thompson Sampling in Python - Step 2.srt 6KB 31. Artificial Neural Networks/18. ANN in Python - Step 7.srt 6KB 5. Multiple Linear Regression/2. Dataset + Business Problem Description.srt 6KB 29. Part 7 Natural Language Processing/21. Natural Language Processing in R - Step 7.srt 6KB 4. Simple Linear Regression/11. Simple Linear Regression in R - Step 3.srt 6KB 1. Welcome to the course!/1. Applications of Machine Learning.srt 5KB 28. Thompson Sampling/7. Thompson Sampling in R - Step 2.srt 5KB 32. Convolutional Neural Networks/1. Plan of attack.srt 5KB 31. Artificial Neural Networks/14. ANN in Python - Step 3.srt 5KB 35. Linear Discriminant Analysis (LDA)/1. Linear Discriminant Analysis (LDA) Intuition.srt 5KB 34. Principal Component Analysis (PCA)/1. Principal Component Analysis (PCA) Intuition.srt 5KB 27. Upper Confidence Bound (UCB)/7. Upper Confidence Bound in Python - Step 4.srt 5KB 15. Kernel SVM/4. Types of Kernel Functions.srt 5KB 12. Logistic Regression/4. Logistic Regression in Python - Step 2.srt 5KB 12. Logistic Regression/2. How to get the dataset.srt 5KB 13. K-Nearest Neighbors (K-NN)/2. How to get the dataset.srt 5KB 14. Support Vector Machine (SVM)/2. How to get the dataset.srt 5KB 15. Kernel SVM/5. How to get the dataset.srt 5KB 16. Naive Bayes/5. How to get the dataset.srt 5KB 17. Decision Tree Classification/2. How to get the dataset.srt 5KB 18. Random Forest Classification/2. How to get the dataset.srt 5KB 21. K-Means Clustering/4. How to get the dataset.srt 5KB 22. Hierarchical Clustering/4. How to get the dataset.srt 5KB 24. Apriori/2. How to get the dataset.srt 5KB 25. Eclat/2. How to get the dataset.srt 5KB 27. Upper Confidence Bound (UCB)/3. How to get the dataset.srt 5KB 28. Thompson Sampling/3. How to get the dataset.srt 5KB 29. Part 7 Natural Language Processing/3. How to get the dataset.srt 5KB 31. Artificial Neural Networks/9. How to get the dataset.srt 5KB 32. Convolutional Neural Networks/10. How to get the dataset.srt 5KB 34. Principal Component Analysis (PCA)/2. How to get the dataset.srt 5KB 35. Linear Discriminant Analysis (LDA)/2. How to get the dataset.srt 5KB 36. Kernel PCA/1. How to get the dataset.srt 5KB 38. Model Selection/1. How to get the dataset.srt 5KB 39. XGBoost/1. How to get the dataset.srt 5KB 4. Simple Linear Regression/1. How to get the dataset.srt 5KB 5. Multiple Linear Regression/1. How to get the dataset.srt 5KB 6. Polynomial Regression/2. How to get the dataset.srt 5KB 7. Support Vector Regression (SVR)/1. How to get the dataset.srt 5KB 8. Decision Tree Regression/2. How to get the dataset.srt 5KB 9. Random Forest Regression/2. How to get the dataset.srt 5KB 22. Hierarchical Clustering/12. HC in R - Step 3.srt 5KB 40. Bonus Lectures/1. YOUR SPECIAL BONUS.html 5KB 29. Part 7 Natural Language Processing/18. Natural Language Processing in R - Step 4.srt 5KB 32. Convolutional Neural Networks/19. CNN in Python - Step 8.srt 5KB 31. Artificial Neural Networks/17. ANN in Python - Step 6.srt 4KB 32. Convolutional Neural Networks/13. CNN in Python - Step 2.srt 4KB 27. Upper Confidence Bound (UCB)/11. Upper Confidence Bound in R - Step 4.srt 4KB 15. Kernel SVM/1. Kernel SVM Intuition.srt 4KB 29. Part 7 Natural Language Processing/9. Natural Language Processing in Python - Step 6.srt 4KB 12. Logistic Regression/10. Logistic Regression in R - Step 2.srt 4KB 4. Simple Linear Regression/4. Simple Linear Regression Intuition - Step 2.srt 4KB 12. Logistic Regression/5. Logistic Regression in Python - Step 3.srt 4KB 4. Simple Linear Regression/2. Dataset + Business Problem Description.srt 4KB 5. Multiple Linear Regression/10. Multiple Linear Regression in Python - Step 2.srt 4KB 1. Welcome to the course!/7. Updates on Udemy Reviews.srt 4KB 22. Hierarchical Clustering/14. HC in R - Step 5.srt 4KB 31. Artificial Neural Networks/1. Plan of attack.srt 4KB 12. Logistic Regression/12. Logistic Regression in R - Step 4.srt 4KB 31. Artificial Neural Networks/15. ANN in Python - Step 4.srt 4KB 22. Hierarchical Clustering/13. HC in R - Step 4.srt 4KB 5. Multiple Linear Regression/6. Multiple Linear Regression Intuition - Step 4.srt 4KB 19. Evaluating Classification Models Performance/6. Conclusion of Part 3 - Classification.html 3KB 29. Part 7 Natural Language Processing/19. Natural Language Processing in R - Step 5.srt 3KB 1. Welcome to the course!/4. Important notes, tips & tricks for this course.html 3KB 19. Evaluating Classification Models Performance/3. Accuracy Paradox.srt 3KB 10. Evaluating Regression Models Performance/5. Conclusion of Part 2 - Regression.html 3KB 2. Part 1 Data Preprocessing/8. WARNING - Update.html 3KB 29. Part 7 Natural Language Processing/6. Natural Language Processing in Python - Step 3.srt 3KB 32. Convolutional Neural Networks/6. Step 3 - Flattening.srt 3KB 2. Part 1 Data Preprocessing/1. Welcome to Part 1 - Data Preprocessing.srt 3KB 32. Convolutional Neural Networks/22. CNN in R.html 2KB 1. Welcome to the course!/2. BONUS Learning Paths.html 2KB 39. XGBoost/5. THANK YOU bonus video.srt 2KB 5. Multiple Linear Regression/15. Multiple Linear Regression in Python - Automatic Backward Elimination.html 2KB 6. Polynomial Regression/3.1 polynomial_regression-updated.py 2KB 2. Part 1 Data Preprocessing/5. For Python learners, summary of Object-oriented programming classes & objects.html 2KB 1. Welcome to the course!/13. FAQBot!.html 2KB 32. Convolutional Neural Networks/14. CNN in Python - Step 3.srt 2KB 29. Part 7 Natural Language Processing/1. Welcome to Part 7 - Natural Language Processing.html 2KB 2. Part 1 Data Preprocessing/7.1 categorical_data.py 2KB 5. Multiple Linear Regression/3. Multiple Linear Regression Intuition - Step 1.srt 2KB 1. Welcome to the course!/5. This PDF resource will help you a lot.html 1KB 5. Multiple Linear Regression/4. Multiple Linear Regression Intuition - Step 2.srt 1KB 31. Artificial Neural Networks/11. Installing Keras.html 1KB 29. Part 7 Natural Language Processing/25. Homework Challenge.html 1KB 29. Part 7 Natural Language Processing/14. Homework Challenge.html 1KB 12. Logistic Regression/13. Warning - Update.html 1KB 1. Welcome to the course!/9. Update Recommended Anaconda Version.html 1KB 33. Part 9 Dimensionality Reduction/1. Welcome to Part 9 - Dimensionality Reduction.html 1KB 26. Part 6 Reinforcement Learning/1. Welcome to Part 6 - Reinforcement Learning.html 1KB 1. Welcome to the course!/11. BONUS Meet your instructors.html 1KB 1. Welcome to the course!/6. The whole code folder of the course.html 1KB 2. Part 1 Data Preprocessing/6.1 missing_data.py 976B 32. Convolutional Neural Networks/11. Installing Keras.html 927B 37. Part 10 Model Selection & Boosting/1. Welcome to Part 10 - Model Selection & Boosting.html 899B 3. Part 2 Regression/1. Welcome to Part 2 - Regression.html 875B 30. Part 8 Deep Learning/1. Welcome to Part 8 - Deep Learning.html 870B 11. Part 3 Classification/1. Welcome to Part 3 - Classification.html 831B 20. Part 4 Clustering/1. Welcome to Part 4 - Clustering.html 734B 5. Multiple Linear Regression/21. Multiple Linear Regression in R - Automatic Backward Elimination.html 726B 5. Multiple Linear Regression/7. Prerequisites What is the P-Value.html 676B 6. Polynomial Regression/3. Polynomial Regression update for Python.html 609B 1. Welcome to the course!/12. Some Additional Resources.html 551B 22. Hierarchical Clustering/16. Conclusion of Part 4 - Clustering.html 516B 23. Part 5 Association Rule Learning/1. Welcome to Part 5 - Association Rule Learning.html 425B 12. Logistic Regression/16. Logistic Regression.html 125B 13. K-Nearest Neighbors (K-NN)/5. K-Nearest Neighbor.html 125B 2. Part 1 Data Preprocessing/12. Data Preprocessing.html 125B 21. K-Means Clustering/7. K-Means Clustering.html 125B 22. Hierarchical Clustering/15. Hierarchical Clustering.html 125B 4. Simple Linear Regression/13. Simple Linear Regression.html 125B 5. Multiple Linear Regression/22. Multiple Linear Regression.html 125B [GigaCourse.com].url 49B