589689.xyz

[] Udemy - Machine Learning A-Z™ Hands-On Python & R In Data Science

  • 收录时间:2021-02-26 06:07:52
  • 文件大小:12GB
  • 下载次数:1
  • 最近下载:2021-02-26 06:07:52
  • 磁力链接:

文件列表

  1. 37. Convolutional Neural Networks/10.1 Section 40 - Convolutional Neural Networks (CNN).zip 224MB
  2. 29. Apriori/6. Apriori in Python - Step 4.mp4 164MB
  3. 35. -------------------- Part 8 Deep Learning --------------------/2. What is Deep Learning.srt 158MB
  4. 37. Convolutional Neural Networks/16. CNN in Python - FINAL DEMO!.mp4 153MB
  5. 43. Model Selection/3. Grid Search in Python.mp4 152MB
  6. 17. K-Nearest Neighbors (K-NN)/3. K-NN in Python.mp4 147MB
  7. 23. Classification Model Selection in Python/2. THE ULTIMATE DEMO OF THE POWERFUL CLASSIFICATION CODE TEMPLATES IN ACTION!.mp4 136MB
  8. 27. Hierarchical Clustering/7. Hierarchical Clustering in Python - Step 2.mp4 136MB
  9. 13. Regression Model Selection in Python/2. Preparation of the Regression Code Templates.mp4 124MB
  10. 26. K-Means Clustering/9. K-Means Clustering in Python - Step 5.mp4 121MB
  11. 16. Logistic Regression/9. Logistic Regression in Python - Step 7.mp4 119MB
  12. 37. Convolutional Neural Networks/13. CNN in Python - Step 3.mp4 119MB
  13. 39. Principal Component Analysis (PCA)/3. PCA in Python - Step 1.mp4 113MB
  14. 43. Model Selection/2. k-Fold Cross Validation in Python.mp4 112MB
  15. 36. Artificial Neural Networks/13. ANN in Python - Step 2.mp4 111MB
  16. 21. Decision Tree Classification/3. Decision Tree Classification in Python.mp4 108MB
  17. 29. Apriori/4. Apriori in Python - Step 2.mp4 108MB
  18. 37. Convolutional Neural Networks/12. CNN in Python - Step 2.mp4 107MB
  19. 18. Support Vector Machine (SVM)/4. SVM in Python.mp4 105MB
  20. 34. -------------------- Part 7 Natural Language Processing --------------------/5. Bag-Of-Words Model.mp4 103MB
  21. 40. Linear Discriminant Analysis (LDA)/3. LDA in Python.mp4 102MB
  22. 3. Data Preprocessing in Python/9. Feature Scaling.mp4 102MB
  23. 36. Artificial Neural Networks/16. ANN in Python - Step 5.mp4 101MB
  24. 20. Naive Bayes/6. Naive Bayes in Python.mp4 100MB
  25. 37. Convolutional Neural Networks/15. CNN in Python - Step 5.mp4 98MB
  26. 22. Random Forest Classification/3. Random Forest Classification in Python.mp4 97MB
  27. 1. Welcome to the course!/9. Presentation of the ML A-Z folder, Colaboratory, Jupyter Notebook and Spyder.mp4 95MB
  28. 16. Logistic Regression/15. Logistic Regression in R - Step 5.mp4 94MB
  29. 9. Support Vector Regression (SVR)/8. SVR in Python - Step 5.mp4 94MB
  30. 44. XGBoost/2. XGBoost in Python.mp4 90MB
  31. 34. -------------------- Part 7 Natural Language Processing --------------------/11. Natural Language Processing in Python - Step 5.mp4 90MB
  32. 3. Data Preprocessing in Python/7. Encoding Categorical Data.mp4 89MB
  33. 19. Kernel SVM/7. Kernel SVM in Python.mp4 88MB
  34. 9. Support Vector Regression (SVR)/5. SVR in Python - Step 2.mp4 87MB
  35. 4. Data Preprocessing in R/8. Splitting the dataset into the Training set and Test set.mp4 87MB
  36. 32. Upper Confidence Bound (UCB)/7. Upper Confidence Bound in Python - Step 4.mp4 85MB
  37. 16. Logistic Regression/4. Logistic Regression in Python - Step 2.mp4 85MB
  38. 34. -------------------- Part 7 Natural Language Processing --------------------/4. Classical vs Deep Learning Models.mp4 84MB
  39. 26. K-Means Clustering/7. K-Means Clustering in Python - Step 3.mp4 81MB
  40. 4. Data Preprocessing in R/9. Feature Scaling.mp4 79MB
  41. 33. Thompson Sampling/6. Thompson Sampling in Python - Step 3.mp4 79MB
  42. 8. Polynomial Regression/5. Polynomial Regression in Python - Step 3.mp4 78MB
  43. 41. Kernel PCA/2. Kernel PCA in Python.mp4 77MB
  44. 30. Eclat/3. Eclat in Python.mp4 76MB
  45. 27. Hierarchical Clustering/8. Hierarchical Clustering in Python - Step 3.mp4 75MB
  46. 36. Artificial Neural Networks/14. ANN in Python - Step 3.mp4 75MB
  47. 6. Simple Linear Regression/7. Simple Linear Regression in Python - Step 4.mp4 75MB
  48. 11. Random Forest Regression/3. Random Forest Regression in Python.mp4 74MB
  49. 7. Multiple Linear Regression/12. Multiple Linear Regression in Python - Step 4.mp4 73MB
  50. 3. Data Preprocessing in Python/4. Importing the Dataset.mp4 72MB
  51. 37. Convolutional Neural Networks/11. CNN in Python - Step 1.mp4 71MB
  52. 33. Thompson Sampling/5. Thompson Sampling in Python - Step 2.mp4 70MB
  53. 29. Apriori/3. Apriori in Python - Step 1.mp4 70MB
  54. 8. Polynomial Regression/4. Polynomial Regression in Python - Step 2.mp4 69MB
  55. 29. Apriori/5. Apriori in Python - Step 3.mp4 69MB
  56. 3. Data Preprocessing in Python/6. Taking care of Missing Data.mp4 69MB
  57. 21. Decision Tree Classification/4. Decision Tree Classification in R.mp4 68MB
  58. 3. Data Preprocessing in Python/8. Splitting the dataset into the Training set and Test set.mp4 68MB
  59. 36. Artificial Neural Networks/11. ANN in Python - Step 1.mp4 66MB
  60. 19. Kernel SVM/5. Non-Linear Kernel SVR (Advanced).mp4 66MB
  61. 36. Artificial Neural Networks/15. ANN in Python - Step 4.mp4 65MB
  62. 18. Support Vector Machine (SVM)/5. SVM in R.mp4 65MB
  63. 22. Random Forest Classification/4. Random Forest Classification in R.mp4 64MB
  64. 7. Multiple Linear Regression/10. Multiple Linear Regression in Python - Step 2.mp4 62MB
  65. 34. -------------------- Part 7 Natural Language Processing --------------------/9. Natural Language Processing in Python - Step 3.mp4 61MB
  66. 34. -------------------- Part 7 Natural Language Processing --------------------/10. Natural Language Processing in Python - Step 4.mp4 60MB
  67. 32. Upper Confidence Bound (UCB)/4. Upper Confidence Bound in Python - Step 1.mp4 59MB
  68. 8. Polynomial Regression/3. Polynomial Regression in Python - Step 1.mp4 58MB
  69. 7. Multiple Linear Regression/11. Multiple Linear Regression in Python - Step 3.mp4 58MB
  70. 32. Upper Confidence Bound (UCB)/13. Upper Confidence Bound in R - Step 3.mp4 58MB
  71. 4. Data Preprocessing in R/7. Encoding Categorical Data.mp4 57MB
  72. 13. Regression Model Selection in Python/3. THE ULTIMATE DEMO OF THE POWERFUL REGRESSION CODE TEMPLATES IN ACTION!.mp4 57MB
  73. 41. Kernel PCA/3. Kernel PCA in R.mp4 57MB
  74. 29. Apriori/9. Apriori in R - Step 3.mp4 57MB
  75. 7. Multiple Linear Regression/6. Understanding the P-Value.mp4 56MB
  76. 10. Decision Tree Regression/7. Decision Tree Regression in R.mp4 56MB
  77. 17. K-Nearest Neighbors (K-NN)/4. K-NN in R.mp4 56MB
  78. 8. Polynomial Regression/9. Polynomial Regression in R - Step 3.mp4 55MB
  79. 10. Decision Tree Regression/6. Decision Tree Regression in Python - Step 4.mp4 55MB
  80. 3. Data Preprocessing in Python/2. Getting Started.mp4 54MB
  81. 34. -------------------- Part 7 Natural Language Processing --------------------/24. Natural Language Processing in R - Step 10.mp4 54MB
  82. 26. K-Means Clustering/6. K-Means Clustering in Python - Step 2.mp4 54MB
  83. 16. Logistic Regression/8. Logistic Regression in Python - Step 6.mp4 53MB
  84. 34. -------------------- Part 7 Natural Language Processing --------------------/12. Natural Language Processing in Python - Step 6.mp4 53MB
  85. 29. Apriori/7. Apriori in R - Step 1.mp4 53MB
  86. 19. Kernel SVM/8. Kernel SVM in R.mp4 53MB
  87. 44. XGBoost/5. THANK YOU Bonus Video.mp4 52MB
  88. 11. Random Forest Regression/4. Random Forest Regression in R.mp4 52MB
  89. 40. Linear Discriminant Analysis (LDA)/4. LDA in R.mp4 51MB
  90. 34. -------------------- Part 7 Natural Language Processing --------------------/15. Natural Language Processing in R - Step 1.mp4 51MB
  91. 33. Thompson Sampling/9. Thompson Sampling in R - Step 1.mp4 51MB
  92. 7. Multiple Linear Regression/9. Multiple Linear Regression in Python - Step 1.mp4 51MB
  93. 7. Multiple Linear Regression/18. Multiple Linear Regression in R - Backward Elimination - HOMEWORK !.mp4 51MB
  94. 4. Data Preprocessing in R/10. Data Preprocessing Template.mp4 51MB
  95. 20. Naive Bayes/1. Bayes Theorem.mp4 50MB
  96. 36. Artificial Neural Networks/17. ANN in R - Step 1.mp4 50MB
  97. 20. Naive Bayes/7. Naive Bayes in R.mp4 50MB
  98. 6. Simple Linear Regression/12. Simple Linear Regression in R - Step 4.mp4 49MB
  99. 6. Simple Linear Regression/4. Simple Linear Regression in Python - Step 1.mp4 49MB
  100. 44. XGBoost/4. XGBoost in R.mp4 47MB
  101. 9. Support Vector Regression (SVR)/7. SVR in Python - Step 4.mp4 46MB
  102. 7. Multiple Linear Regression/16. Multiple Linear Regression in R - Step 2.mp4 45MB
  103. 16. Logistic Regression/6. Logistic Regression in Python - Step 4.mp4 45MB
  104. 32. Upper Confidence Bound (UCB)/9. Upper Confidence Bound in Python - Step 6.mp4 45MB
  105. 33. Thompson Sampling/7. Thompson Sampling in Python - Step 4.mp4 45MB
  106. 16. Logistic Regression/3. Logistic Regression in Python - Step 1.mp4 45MB
  107. 36. Artificial Neural Networks/20. ANN in R - Step 4 (Last step).mp4 44MB
  108. 43. Model Selection/4. k-Fold Cross Validation in R.mp4 44MB
  109. 32. Upper Confidence Bound (UCB)/10. Upper Confidence Bound in Python - Step 7.mp4 43MB
  110. 16. Logistic Regression/5. Logistic Regression in Python - Step 3.mp4 43MB
  111. 37. Convolutional Neural Networks/7. Step 4 - Full Connection.mp4 43MB
  112. 9. Support Vector Regression (SVR)/4. SVR in Python - Step 1.mp4 43MB
  113. 10. Decision Tree Regression/3. Decision Tree Regression in Python - Step 1.mp4 42MB
  114. 39. Principal Component Analysis (PCA)/4. PCA in Python - Step 2.mp4 41MB
  115. 34. -------------------- Part 7 Natural Language Processing --------------------/8. Natural Language Processing in Python - Step 2.mp4 40MB
  116. 37. Convolutional Neural Networks/5. Step 2 - Pooling.mp4 40MB
  117. 27. Hierarchical Clustering/6. Hierarchical Clustering in Python - Step 1.mp4 40MB
  118. 37. Convolutional Neural Networks/14. CNN in Python - Step 4.mp4 40MB
  119. 6. Simple Linear Regression/5. Simple Linear Regression in Python - Step 2.mp4 40MB
  120. 4. Data Preprocessing in R/6. Taking care of Missing Data.mp4 40MB
  121. 29. Apriori/8. Apriori in R - Step 2.mp4 39MB
  122. 8. Polynomial Regression/6. Polynomial Regression in Python - Step 4.mp4 39MB
  123. 32. Upper Confidence Bound (UCB)/6. Upper Confidence Bound in Python - Step 3.mp4 38MB
  124. 26. K-Means Clustering/5. K-Means Clustering in Python - Step 1.mp4 38MB
  125. 36. Artificial Neural Networks/19. ANN in R - Step 3.mp4 38MB
  126. 34. -------------------- Part 7 Natural Language Processing --------------------/23. Natural Language Processing in R - Step 9.mp4 38MB
  127. 33. Thompson Sampling/1. Thompson Sampling Intuition.mp4 37MB
  128. 26. K-Means Clustering/10. K-Means Clustering in R.mp4 37MB
  129. 9. Support Vector Regression (SVR)/1. SVR Intuition (Updated!).mp4 37MB
  130. 39. Principal Component Analysis (PCA)/7. PCA in R - Step 3.mp4 37MB
  131. 43. Model Selection/5. Grid Search in R.mp4 36MB
  132. 26. K-Means Clustering/8. K-Means Clustering in Python - Step 4.mp4 35MB
  133. 29. Apriori/1. Apriori Intuition.mp4 35MB
  134. 9. Support Vector Regression (SVR)/6. SVR in Python - Step 3.mp4 35MB
  135. 19. Kernel SVM/3. The Kernel Trick.mp4 35MB
  136. 32. Upper Confidence Bound (UCB)/12. Upper Confidence Bound in R - Step 2.mp4 34MB
  137. 34. -------------------- Part 7 Natural Language Processing --------------------/7. Natural Language Processing in Python - Step 1.mp4 34MB
  138. 32. Upper Confidence Bound (UCB)/11. Upper Confidence Bound in R - Step 1.mp4 34MB
  139. 9. Support Vector Regression (SVR)/9. SVR in R.mp4 34MB
  140. 37. Convolutional Neural Networks/9. Softmax & Cross-Entropy.mp4 33MB
  141. 7. Multiple Linear Regression/7. Multiple Linear Regression Intuition - Step 5.mp4 33MB
  142. 32. Upper Confidence Bound (UCB)/8. Upper Confidence Bound in Python - Step 5.mp4 32MB
  143. 8. Polynomial Regression/8. Polynomial Regression in R - Step 2.mp4 32MB
  144. 39. Principal Component Analysis (PCA)/1. Principal Component Analysis (PCA) Intuition.mp4 32MB
  145. 8. Polynomial Regression/11. R Regression Template.mp4 31MB
  146. 35. -------------------- Part 8 Deep Learning --------------------/2. What is Deep Learning.mp4 31MB
  147. 20. Naive Bayes/2. Naive Bayes Intuition.mp4 31MB
  148. 37. Convolutional Neural Networks/3. Step 1 - Convolution Operation.mp4 31MB
  149. 39. Principal Component Analysis (PCA)/5. PCA in R - Step 1.mp4 31MB
  150. 16. Logistic Regression/7. Logistic Regression in Python - Step 5.mp4 31MB
  151. 33. Thompson Sampling/4. Thompson Sampling in Python - Step 1.mp4 31MB
  152. 32. Upper Confidence Bound (UCB)/1. The Multi-Armed Bandit Problem.mp4 30MB
  153. 26. K-Means Clustering/1. K-Means Clustering Intuition.mp4 30MB
  154. 36. Artificial Neural Networks/2. The Neuron.mp4 30MB
  155. 37. Convolutional Neural Networks/2. What are convolutional neural networks.mp4 30MB
  156. 32. Upper Confidence Bound (UCB)/2. Upper Confidence Bound (UCB) Intuition.mp4 29MB
  157. 36. Artificial Neural Networks/9. Business Problem Description.mp4 29MB
  158. 16. Logistic Regression/1. Logistic Regression Intuition.mp4 29MB
  159. 39. Principal Component Analysis (PCA)/6. PCA in R - Step 2.mp4 29MB
  160. 8. Polynomial Regression/10. Polynomial Regression in R - Step 4.mp4 29MB
  161. 14. Regression Model Selection in R/1. Evaluating Regression Models Performance - Homework's Final Part.mp4 28MB
  162. 6. Simple Linear Regression/6. Simple Linear Regression in Python - Step 3.mp4 28MB
  163. 16. Logistic Regression/12. Logistic Regression in R - Step 3.mp4 27MB
  164. 14. Regression Model Selection in R/2. Interpreting Linear Regression Coefficients.mp4 27MB
  165. 40. Linear Discriminant Analysis (LDA)/1. Linear Discriminant Analysis (LDA) Intuition.mp4 27MB
  166. 36. Artificial Neural Networks/5. How do Neural Networks learn.mp4 27MB
  167. 10. Decision Tree Regression/4. Decision Tree Regression in Python - Step 2.mp4 26MB
  168. 26. K-Means Clustering/3. K-Means Selecting The Number Of Clusters.mp4 26MB
  169. 22. Random Forest Classification/1. Random Forest Classification Intuition.mp4 26MB
  170. 10. Decision Tree Regression/1. Decision Tree Regression Intuition.mp4 25MB
  171. 30. Eclat/4. Eclat in R.mp4 25MB
  172. 6. Simple Linear Regression/10. Simple Linear Regression in R - Step 2.mp4 25MB
  173. 36. Artificial Neural Networks/4. How do Neural Networks work.mp4 24MB
  174. 7. Multiple Linear Regression/15. Multiple Linear Regression in R - Step 1.mp4 23MB
  175. 1. Welcome to the course!/10. Installing R and R Studio (Mac, Linux & Windows).mp4 23MB
  176. 27. Hierarchical Clustering/4. Hierarchical Clustering Using Dendrograms.mp4 23MB
  177. 34. -------------------- Part 7 Natural Language Processing --------------------/3. Types of Natural Language Processing.mp4 22MB
  178. 7. Multiple Linear Regression/19. Multiple Linear Regression in R - Backward Elimination - Homework Solution.mp4 22MB
  179. 34. -------------------- Part 7 Natural Language Processing --------------------/16. Natural Language Processing in R - Step 2.mp4 22MB
  180. 21. Decision Tree Classification/1. Decision Tree Classification Intuition.mp4 22MB
  181. 12. Evaluating Regression Models Performance/2. Adjusted R-Squared Intuition.mp4 21MB
  182. 8. Polynomial Regression/7. Polynomial Regression in R - Step 1.mp4 21MB
  183. 24. Evaluating Classification Models Performance/4. CAP Curve.mp4 20MB
  184. 18. Support Vector Machine (SVM)/2. SVM Intuition.mp4 20MB
  185. 9. Support Vector Regression (SVR)/2. Heads-up on non-linear SVR.mp4 20MB
  186. 10. Decision Tree Regression/5. Decision Tree Regression in Python - Step 3.mp4 19MB
  187. 20. Naive Bayes/4. Naive Bayes Intuition (Extras).mp4 19MB
  188. 36. Artificial Neural Networks/6. Gradient Descent.mp4 19MB
  189. 36. Artificial Neural Networks/18. ANN in R - Step 2.mp4 18MB
  190. 32. Upper Confidence Bound (UCB)/5. Upper Confidence Bound in Python - Step 2.mp4 18MB
  191. 16. Logistic Regression/16. R Classification Template.mp4 18MB
  192. 27. Hierarchical Clustering/3. Hierarchical Clustering How Dendrograms Work.mp4 17MB
  193. 34. -------------------- Part 7 Natural Language Processing --------------------/22. Natural Language Processing in R - Step 8.mp4 17MB
  194. 34. -------------------- Part 7 Natural Language Processing --------------------/17. Natural Language Processing in R - Step 3.mp4 17MB
  195. 36. Artificial Neural Networks/7. Stochastic Gradient Descent.mp4 17MB
  196. 7. Multiple Linear Regression/4. Multiple Linear Regression Intuition - Step 3.mp4 17MB
  197. 27. Hierarchical Clustering/2. Hierarchical Clustering Intuition.mp4 17MB
  198. 4. Data Preprocessing in R/5. Importing the Dataset.mp4 16MB
  199. 34. -------------------- Part 7 Natural Language Processing --------------------/20. Natural Language Processing in R - Step 6.mp4 16MB
  200. 3. Data Preprocessing in Python/3. Importing the Libraries.mp4 16MB
  201. 16. Logistic Regression/10. Logistic Regression in R - Step 1.mp4 16MB
  202. 19. Kernel SVM/4. Types of Kernel Functions.mp4 16MB
  203. 11. Random Forest Regression/1. Random Forest Regression Intuition.mp4 16MB
  204. 19. Kernel SVM/2. Mapping to a higher dimension.mp4 15MB
  205. 26. K-Means Clustering/2. K-Means Random Initialization Trap.mp4 15MB
  206. 24. Evaluating Classification Models Performance/1. False Positives & False Negatives.mp4 15MB
  207. 16. Logistic Regression/11. Logistic Regression in R - Step 2.mp4 15MB
  208. 36. Artificial Neural Networks/3. The Activation Function.mp4 15MB
  209. 1. Welcome to the course!/5. Why Machine Learning is the Future.mp4 14MB
  210. 37. Convolutional Neural Networks/4. Step 1(b) - ReLU Layer.mp4 14MB
  211. 33. Thompson Sampling/2. Algorithm Comparison UCB vs Thompson Sampling.mp4 14MB
  212. 27. Hierarchical Clustering/10. Hierarchical Clustering in R - Step 2.mp4 14MB
  213. 7. Multiple Linear Regression/17. Multiple Linear Regression in R - Step 3.mp4 14MB
  214. 27. Hierarchical Clustering/13. Hierarchical Clustering in R - Step 5.mp4 14MB
  215. 20. Naive Bayes/3. Naive Bayes Intuition (Challenge Reveal).mp4 13MB
  216. 24. Evaluating Classification Models Performance/5. CAP Curve Analysis.mp4 13MB
  217. 34. -------------------- Part 7 Natural Language Processing --------------------/2. NLP Intuition.mp4 13MB
  218. 7. Multiple Linear Regression/1. Dataset + Business Problem Description.mp4 13MB
  219. 4. Data Preprocessing in R/4. Dataset Description.mp4 12MB
  220. 16. Logistic Regression/13. Logistic Regression in R - Step 4.mp4 12MB
  221. 6. Simple Linear Regression/9. Simple Linear Regression in R - Step 1.mp4 12MB
  222. 6. Simple Linear Regression/11. Simple Linear Regression in R - Step 3.mp4 11MB
  223. 36. Artificial Neural Networks/8. Backpropagation.mp4 11MB
  224. 30. Eclat/1. Eclat Intuition.mp4 11MB
  225. 6. Simple Linear Regression/1. Simple Linear Regression Intuition - Step 1.mp4 11MB
  226. 17. K-Nearest Neighbors (K-NN)/1. K-Nearest Neighbor Intuition.mp4 10MB
  227. 27. Hierarchical Clustering/12. Hierarchical Clustering in R - Step 4.mp4 10MB
  228. 27. Hierarchical Clustering/11. Hierarchical Clustering in R - Step 3.mp4 10MB
  229. 1. Welcome to the course!/1. Applications of Machine Learning.mp4 10MB
  230. 12. Evaluating Regression Models Performance/1. R-Squared Intuition.mp4 10MB
  231. 4. Data Preprocessing in R/2. Getting Started.mp4 10MB
  232. 34. -------------------- Part 7 Natural Language Processing --------------------/21. Natural Language Processing in R - Step 7.mp4 10MB
  233. 33. Thompson Sampling/10. Thompson Sampling in R - Step 2.mp4 10MB
  234. 32. Upper Confidence Bound (UCB)/14. Upper Confidence Bound in R - Step 4.mp4 10MB
  235. 8. Polynomial Regression/1. Polynomial Regression Intuition.mp4 9MB
  236. 24. Evaluating Classification Models Performance/2. Confusion Matrix.mp4 9MB
  237. 27. Hierarchical Clustering/9. Hierarchical Clustering in R - Step 1.mp4 9MB
  238. 34. -------------------- Part 7 Natural Language Processing --------------------/18. Natural Language Processing in R - Step 4.mp4 8MB
  239. 37. Convolutional Neural Networks/8. Summary.mp4 8MB
  240. 19. Kernel SVM/1. Kernel SVM Intuition.mp4 6MB
  241. 6. Simple Linear Regression/2. Simple Linear Regression Intuition - Step 2.mp4 6MB
  242. 37. Convolutional Neural Networks/1. Plan of attack.mp4 6MB
  243. 34. -------------------- Part 7 Natural Language Processing --------------------/19. Natural Language Processing in R - Step 5.mp4 6MB
  244. 7. Multiple Linear Regression/5. Multiple Linear Regression Intuition - Step 4.mp4 5MB
  245. 10. Decision Tree Regression/2.1 Machine Learning A-Z (Codes and Datasets).zip 5MB
  246. 11. Random Forest Regression/2.1 Machine Learning A-Z (Codes and Datasets).zip 5MB
  247. 17. K-Nearest Neighbors (K-NN)/2.1 Machine Learning A-Z (Codes and Datasets).zip 5MB
  248. 18. Support Vector Machine (SVM)/3.1 Machine Learning A-Z (Codes and Datasets).zip 5MB
  249. 19. Kernel SVM/6.1 Machine Learning A-Z (Codes and Datasets).zip 5MB
  250. 20. Naive Bayes/5.1 Machine Learning A-Z (Codes and Datasets).zip 5MB
  251. 22. Random Forest Classification/2.1 Machine Learning A-Z (Codes and Datasets).zip 5MB
  252. 27. Hierarchical Clustering/5.1 Machine Learning A-Z (Codes and Datasets).zip 5MB
  253. 29. Apriori/2.1 Machine Learning A-Z (Codes and Datasets).zip 5MB
  254. 32. Upper Confidence Bound (UCB)/3.1 Machine Learning A-Z (Codes and Datasets).zip 5MB
  255. 36. Artificial Neural Networks/10.1 Machine Learning A-Z (Codes and Datasets).zip 5MB
  256. 41. Kernel PCA/1.1 Machine Learning A-Z (Codes and Datasets).zip 5MB
  257. 43. Model Selection/1.1 Machine Learning A-Z (Codes and Datasets).zip 5MB
  258. 44. XGBoost/1.1 Machine Learning A-Z (Codes and Datasets).zip 5MB
  259. 7. Multiple Linear Regression/8.1 Machine Learning A-Z (Codes and Datasets).zip 5MB
  260. 8. Polynomial Regression/2.1 Machine Learning A-Z (Codes and Datasets).zip 5MB
  261. 1. Welcome to the course!/8.1 Machine Learning A-Z (Codes and Datasets).zip 5MB
  262. 16. Logistic Regression/2.1 Machine Learning A-Z (Codes and Datasets).zip 5MB
  263. 21. Decision Tree Classification/2.1 Machine Learning A-Z (Codes and Datasets).zip 5MB
  264. 26. K-Means Clustering/4.1 Machine Learning A-Z (Codes and Datasets).zip 5MB
  265. 3. Data Preprocessing in Python/1.1 Machine Learning A-Z (Codes and Datasets).zip 5MB
  266. 30. Eclat/2.1 Machine Learning A-Z (Codes and Datasets).zip 5MB
  267. 33. Thompson Sampling/3.1 Machine Learning A-Z (Codes and Datasets).zip 5MB
  268. 34. -------------------- Part 7 Natural Language Processing --------------------/6.1 Machine Learning A-Z (Codes and Datasets).zip 5MB
  269. 39. Principal Component Analysis (PCA)/2.1 Machine Learning A-Z (Codes and Datasets).zip 5MB
  270. 40. Linear Discriminant Analysis (LDA)/2.1 Machine Learning A-Z (Codes and Datasets).zip 5MB
  271. 6. Simple Linear Regression/3.1 Machine Learning A-Z (Codes and Datasets).zip 5MB
  272. 9. Support Vector Regression (SVR)/3.1 Machine Learning A-Z (Codes and Datasets).zip 5MB
  273. 36. Artificial Neural Networks/1. Plan of attack.mp4 5MB
  274. 24. Evaluating Classification Models Performance/3. Accuracy Paradox.mp4 4MB
  275. 37. Convolutional Neural Networks/6. Step 3 - Flattening.mp4 3MB
  276. 1. Welcome to the course!/7.1 Machine_Learning_A_Z_Q_A.pdf 2MB
  277. 7. Multiple Linear Regression/3. Multiple Linear Regression Intuition - Step 2.mp4 2MB
  278. 7. Multiple Linear Regression/2. Multiple Linear Regression Intuition - Step 1.mp4 2MB
  279. 13. Regression Model Selection in Python/4.1 Regression_Bonus.zip 364KB
  280. 14. Regression Model Selection in R/3.1 Regression_Bonus.zip 364KB
  281. 13. Regression Model Selection in Python/1.1 Machine Learning A-Z (Model Selection).zip 160KB
  282. 23. Classification Model Selection in Python/1.1 Machine Learning A-Z (Model Selection).zip 160KB
  283. 30. Eclat/4.1 Eclat.zip 49KB
  284. 37. Convolutional Neural Networks/16. CNN in Python - FINAL DEMO!.srt 39KB
  285. 43. Model Selection/3. Grid Search in Python.srt 35KB
  286. 20. Naive Bayes/1. Bayes Theorem.srt 34KB
  287. 23. Classification Model Selection in Python/2. THE ULTIMATE DEMO OF THE POWERFUL CLASSIFICATION CODE TEMPLATES IN ACTION!.srt 34KB
  288. 22. Random Forest Classification/4. Random Forest Classification in R.srt 32KB
  289. 10. Decision Tree Regression/7. Decision Tree Regression in R.srt 32KB
  290. 29. Apriori/6. Apriori in Python - Step 4.srt 31KB
  291. 29. Apriori/9. Apriori in R - Step 3.srt 31KB
  292. 29. Apriori/7. Apriori in R - Step 1.srt 31KB
  293. 36. Artificial Neural Networks/13. ANN in Python - Step 2.srt 31KB
  294. 8. Polynomial Regression/9. Polynomial Regression in R - Step 3.srt 31KB
  295. 41. Kernel PCA/3. Kernel PCA in R.srt 31KB
  296. 17. K-Nearest Neighbors (K-NN)/3. K-NN in Python.srt 31KB
  297. 3. Data Preprocessing in Python/9. Feature Scaling.srt 30KB
  298. 13. Regression Model Selection in Python/2. Preparation of the Regression Code Templates.srt 30KB
  299. 40. Linear Discriminant Analysis (LDA)/4. LDA in R.srt 30KB
  300. 24. Evaluating Classification Models Performance/6.1 Classification_Pros_Cons.pdf 29KB
  301. 21. Decision Tree Classification/4. Decision Tree Classification in R.srt 29KB
  302. 16. Logistic Regression/15. Logistic Regression in R - Step 5.srt 29KB
  303. 26. K-Means Clustering/9. K-Means Clustering in Python - Step 5.srt 29KB
  304. 37. Convolutional Neural Networks/12. CNN in Python - Step 2.srt 29KB
  305. 37. Convolutional Neural Networks/13. CNN in Python - Step 3.srt 29KB
  306. 43. Model Selection/2. k-Fold Cross Validation in Python.srt 29KB
  307. 37. Convolutional Neural Networks/7. Step 4 - Full Connection.srt 29KB
  308. 34. -------------------- Part 7 Natural Language Processing --------------------/5. Bag-Of-Words Model.srt 28KB
  309. 1. Welcome to the course!/9. Presentation of the ML A-Z folder, Colaboratory, Jupyter Notebook and Spyder.srt 28KB
  310. 11. Random Forest Regression/4. Random Forest Regression in R.srt 28KB
  311. 43. Model Selection/4. k-Fold Cross Validation in R.srt 28KB
  312. 33. Thompson Sampling/9. Thompson Sampling in R - Step 1.srt 28KB
  313. 33. Thompson Sampling/1. Thompson Sampling Intuition.srt 28KB
  314. 7. Multiple Linear Regression/18. Multiple Linear Regression in R - Backward Elimination - HOMEWORK !.srt 27KB
  315. 36. Artificial Neural Networks/17. ANN in R - Step 1.srt 27KB
  316. 39. Principal Component Analysis (PCA)/3. PCA in Python - Step 1.srt 26KB
  317. 29. Apriori/4. Apriori in Python - Step 2.srt 26KB
  318. 34. -------------------- Part 7 Natural Language Processing --------------------/11. Natural Language Processing in Python - Step 5.srt 26KB
  319. 34. -------------------- Part 7 Natural Language Processing --------------------/24. Natural Language Processing in R - Step 10.srt 26KB
  320. 27. Hierarchical Clustering/7. Hierarchical Clustering in Python - Step 2.srt 26KB
  321. 44. XGBoost/4. XGBoost in R.srt 26KB
  322. 29. Apriori/1. Apriori Intuition.srt 26KB
  323. 27. Hierarchical Clustering/15.1 Clustering-Pros-Cons.pdf 26KB
  324. 36. Artificial Neural Networks/16. ANN in Python - Step 5.srt 26KB
  325. 19. Kernel SVM/8. Kernel SVM in R.srt 25KB
  326. 32. Upper Confidence Bound (UCB)/13. Upper Confidence Bound in R - Step 3.srt 25KB
  327. 37. Convolutional Neural Networks/9. Softmax & Cross-Entropy.srt 25KB
  328. 32. Upper Confidence Bound (UCB)/7. Upper Confidence Bound in Python - Step 4.srt 25KB
  329. 36. Artificial Neural Networks/2. The Neuron.srt 25KB
  330. 3. Data Preprocessing in Python/4. Importing the Dataset.srt 24KB
  331. 34. -------------------- Part 7 Natural Language Processing --------------------/15. Natural Language Processing in R - Step 1.srt 24KB
  332. 18. Support Vector Machine (SVM)/4. SVM in Python.srt 24KB
  333. 16. Logistic Regression/1. Logistic Regression Intuition.srt 24KB
  334. 6. Simple Linear Regression/12. Simple Linear Regression in R - Step 4.srt 24KB
  335. 26. K-Means Clustering/7. K-Means Clustering in Python - Step 3.srt 24KB
  336. 7. Multiple Linear Regression/7. Multiple Linear Regression Intuition - Step 5.srt 24KB
  337. 36. Artificial Neural Networks/14. ANN in Python - Step 3.srt 23KB
  338. 40. Linear Discriminant Analysis (LDA)/3. LDA in Python.srt 23KB
  339. 17. K-Nearest Neighbors (K-NN)/4. K-NN in R.srt 23KB
  340. 26. K-Means Clustering/1. K-Means Clustering Intuition.srt 23KB
  341. 20. Naive Bayes/2. Naive Bayes Intuition.srt 23KB
  342. 37. Convolutional Neural Networks/3. Step 1 - Convolution Operation.srt 23KB
  343. 44. XGBoost/2. XGBoost in Python.srt 23KB
  344. 29. Apriori/8. Apriori in R - Step 2.srt 23KB
  345. 16. Logistic Regression/9. Logistic Regression in Python - Step 7.srt 23KB
  346. 37. Convolutional Neural Networks/15. CNN in Python - Step 5.srt 22KB
  347. 32. Upper Confidence Bound (UCB)/1. The Multi-Armed Bandit Problem.srt 22KB
  348. 9. Support Vector Regression (SVR)/8. SVR in Python - Step 5.srt 22KB
  349. 21. Decision Tree Classification/3. Decision Tree Classification in Python.srt 22KB
  350. 20. Naive Bayes/6. Naive Bayes in Python.srt 22KB
  351. 32. Upper Confidence Bound (UCB)/12. Upper Confidence Bound in R - Step 2.srt 22KB
  352. 9. Support Vector Regression (SVR)/5. SVR in Python - Step 2.srt 22KB
  353. 37. Convolutional Neural Networks/2. What are convolutional neural networks.srt 22KB
  354. 3. Data Preprocessing in Python/7. Encoding Categorical Data.srt 22KB
  355. 32. Upper Confidence Bound (UCB)/2. Upper Confidence Bound (UCB) Intuition.srt 22KB
  356. 20. Naive Bayes/7. Naive Bayes in R.srt 22KB
  357. 22. Random Forest Classification/3. Random Forest Classification in Python.srt 21KB
  358. 16. Logistic Regression/4. Logistic Regression in Python - Step 2.srt 21KB
  359. 11. Random Forest Regression/3. Random Forest Regression in Python.srt 21KB
  360. 37. Convolutional Neural Networks/5. Step 2 - Pooling.srt 21KB
  361. 43. Model Selection/5. Grid Search in R.srt 21KB
  362. 8. Polynomial Regression/3. Polynomial Regression in Python - Step 1.srt 21KB
  363. 36. Artificial Neural Networks/20. ANN in R - Step 4 (Last step).srt 21KB
  364. 32. Upper Confidence Bound (UCB)/4. Upper Confidence Bound in Python - Step 1.srt 21KB
  365. 32. Upper Confidence Bound (UCB)/11. Upper Confidence Bound in R - Step 1.srt 21KB
  366. 33. Thompson Sampling/6. Thompson Sampling in Python - Step 3.srt 21KB
  367. 19. Kernel SVM/7. Kernel SVM in Python.srt 20KB
  368. 36. Artificial Neural Networks/15. ANN in Python - Step 4.srt 20KB
  369. 3. Data Preprocessing in Python/8. Splitting the dataset into the Training set and Test set.srt 20KB
  370. 7. Multiple Linear Regression/12. Multiple Linear Regression in Python - Step 4.srt 20KB
  371. 8. Polynomial Regression/5. Polynomial Regression in Python - Step 3.srt 20KB
  372. 6. Simple Linear Regression/4. Simple Linear Regression in Python - Step 1.srt 20KB
  373. 39. Principal Component Analysis (PCA)/7. PCA in R - Step 3.srt 20KB
  374. 34. -------------------- Part 7 Natural Language Processing --------------------/23. Natural Language Processing in R - Step 9.srt 20KB
  375. 7. Multiple Linear Regression/6. Understanding the P-Value.srt 19KB
  376. 26. K-Means Clustering/10. K-Means Clustering in R.srt 19KB
  377. 6. Simple Linear Regression/7. Simple Linear Regression in Python - Step 4.srt 19KB
  378. 29. Apriori/5. Apriori in Python - Step 3.srt 19KB
  379. 34. -------------------- Part 7 Natural Language Processing --------------------/9. Natural Language Processing in Python - Step 3.srt 19KB
  380. 36. Artificial Neural Networks/4. How do Neural Networks work.srt 19KB
  381. 36. Artificial Neural Networks/5. How do Neural Networks learn.srt 19KB
  382. 36. Artificial Neural Networks/19. ANN in R - Step 3.srt 19KB
  383. 30. Eclat/3. Eclat in Python.srt 19KB
  384. 39. Principal Component Analysis (PCA)/5. PCA in R - Step 1.srt 19KB
  385. 9. Support Vector Regression (SVR)/9. SVR in R.srt 19KB
  386. 8. Polynomial Regression/11. R Regression Template.srt 19KB
  387. 26. K-Means Clustering/3. K-Means Selecting The Number Of Clusters.srt 18KB
  388. 18. Support Vector Machine (SVM)/5. SVM in R.srt 18KB
  389. 37. Convolutional Neural Networks/11. CNN in Python - Step 1.srt 18KB
  390. 27. Hierarchical Clustering/8. Hierarchical Clustering in Python - Step 3.srt 18KB
  391. 3. Data Preprocessing in Python/6. Taking care of Missing Data.srt 18KB
  392. 33. Thompson Sampling/5. Thompson Sampling in Python - Step 2.srt 18KB
  393. 8. Polynomial Regression/4. Polynomial Regression in Python - Step 2.srt 18KB
  394. 27. Hierarchical Clustering/4. Hierarchical Clustering Using Dendrograms.srt 18KB
  395. 41. Kernel PCA/2. Kernel PCA in Python.srt 17KB
  396. 36. Artificial Neural Networks/11. ANN in Python - Step 1.srt 17KB
  397. 10. Decision Tree Regression/1. Decision Tree Regression Intuition.srt 17KB
  398. 39. Principal Component Analysis (PCA)/6. PCA in R - Step 2.srt 17KB
  399. 34. -------------------- Part 7 Natural Language Processing --------------------/10. Natural Language Processing in Python - Step 4.srt 17KB
  400. 3. Data Preprocessing in Python/2. Getting Started.srt 17KB
  401. 7. Multiple Linear Regression/11. Multiple Linear Regression in Python - Step 3.srt 17KB
  402. 19. Kernel SVM/3. The Kernel Trick.srt 17KB
  403. 24. Evaluating Classification Models Performance/4. CAP Curve.srt 16KB
  404. 34. -------------------- Part 7 Natural Language Processing --------------------/4. Classical vs Deep Learning Models.srt 16KB
  405. 19. Kernel SVM/5. Non-Linear Kernel SVR (Advanced).srt 16KB
  406. 20. Naive Bayes/4. Naive Bayes Intuition (Extras).srt 16KB
  407. 30. Eclat/4. Eclat in R.srt 16KB
  408. 18. Support Vector Machine (SVM)/2. SVM Intuition.srt 16KB
  409. 26. K-Means Clustering/6. K-Means Clustering in Python - Step 2.srt 16KB
  410. 10. Decision Tree Regression/6. Decision Tree Regression in Python - Step 4.srt 15KB
  411. 8. Polynomial Regression/10. Polynomial Regression in R - Step 4.srt 15KB
  412. 7. Multiple Linear Regression/16. Multiple Linear Regression in R - Step 2.srt 15KB
  413. 8. Polynomial Regression/8. Polynomial Regression in R - Step 2.srt 15KB
  414. 34. -------------------- Part 7 Natural Language Processing --------------------/12. Natural Language Processing in Python - Step 6.srt 15KB
  415. 7. Multiple Linear Regression/10. Multiple Linear Regression in Python - Step 2.srt 15KB
  416. 4. Data Preprocessing in R/8. Splitting the dataset into the Training set and Test set.srt 15KB
  417. 27. Hierarchical Clustering/2. Hierarchical Clustering Intuition.srt 15KB
  418. 16. Logistic Regression/3. Logistic Regression in Python - Step 1.srt 14KB
  419. 12. Evaluating Regression Models Performance/2. Adjusted R-Squared Intuition.srt 14KB
  420. 27. Hierarchical Clustering/3. Hierarchical Clustering How Dendrograms Work.srt 14KB
  421. 29. Apriori/3. Apriori in Python - Step 1.srt 14KB
  422. 8. Polynomial Regression/7. Polynomial Regression in R - Step 1.srt 14KB
  423. 36. Artificial Neural Networks/6. Gradient Descent.srt 14KB
  424. 9. Support Vector Regression (SVR)/4. SVR in Python - Step 1.srt 14KB
  425. 16. Logistic Regression/8. Logistic Regression in Python - Step 6.srt 14KB
  426. 13. Regression Model Selection in Python/3. THE ULTIMATE DEMO OF THE POWERFUL REGRESSION CODE TEMPLATES IN ACTION!.srt 14KB
  427. 14. Regression Model Selection in R/2. Interpreting Linear Regression Coefficients.srt 13KB
  428. 10. Decision Tree Regression/3. Decision Tree Regression in Python - Step 1.srt 13KB
  429. 7. Multiple Linear Regression/9. Multiple Linear Regression in Python - Step 1.srt 13KB
  430. 4. Data Preprocessing in R/9. Feature Scaling.srt 13KB
  431. 26. K-Means Clustering/2. K-Means Random Initialization Trap.srt 13KB
  432. 14. Regression Model Selection in R/1. Evaluating Regression Models Performance - Homework's Final Part.srt 13KB
  433. 26. K-Means Clustering/5. K-Means Clustering in Python - Step 1.srt 13KB
  434. 34. -------------------- Part 7 Natural Language Processing --------------------/16. Natural Language Processing in R - Step 2.srt 13KB
  435. 21. Decision Tree Classification/1. Decision Tree Classification Intuition.srt 13KB
  436. 8. Polynomial Regression/6. Polynomial Regression in Python - Step 4.srt 12KB
  437. 36. Artificial Neural Networks/7. Stochastic Gradient Descent.srt 12KB
  438. 36. Artificial Neural Networks/3. The Activation Function.srt 12KB
  439. 9. Support Vector Regression (SVR)/7. SVR in Python - Step 4.srt 12KB
  440. 7. Multiple Linear Regression/19. Multiple Linear Regression in R - Backward Elimination - Homework Solution.srt 12KB
  441. 7. Multiple Linear Regression/15. Multiple Linear Regression in R - Step 1.srt 12KB
  442. 6. Simple Linear Regression/5. Simple Linear Regression in Python - Step 2.srt 12KB
  443. 32. Upper Confidence Bound (UCB)/10. Upper Confidence Bound in Python - Step 7.srt 12KB
  444. 9. Support Vector Regression (SVR)/1. SVR Intuition (Updated!).srt 12KB
  445. 37. Convolutional Neural Networks/14. CNN in Python - Step 4.srt 11KB
  446. 33. Thompson Sampling/7. Thompson Sampling in Python - Step 4.srt 11KB
  447. 24. Evaluating Classification Models Performance/1. False Positives & False Negatives.srt 11KB
  448. 32. Upper Confidence Bound (UCB)/9. Upper Confidence Bound in Python - Step 6.srt 11KB
  449. 16. Logistic Regression/6. Logistic Regression in Python - Step 4.srt 11KB
  450. 33. Thompson Sampling/2. Algorithm Comparison UCB vs Thompson Sampling.srt 11KB
  451. 34. -------------------- Part 7 Natural Language Processing --------------------/7. Natural Language Processing in Python - Step 1.srt 11KB
  452. 32. Upper Confidence Bound (UCB)/6. Upper Confidence Bound in Python - Step 3.srt 11KB
  453. 16. Logistic Regression/5. Logistic Regression in Python - Step 3.srt 11KB
  454. 34. -------------------- Part 7 Natural Language Processing --------------------/8. Natural Language Processing in Python - Step 2.srt 11KB
  455. 7. Multiple Linear Regression/4. Multiple Linear Regression Intuition - Step 3.srt 11KB
  456. 27. Hierarchical Clustering/6. Hierarchical Clustering in Python - Step 1.srt 11KB
  457. 19. Kernel SVM/2. Mapping to a higher dimension.srt 11KB
  458. 11. Random Forest Regression/1. Random Forest Regression Intuition.srt 10KB
  459. 34. -------------------- Part 7 Natural Language Processing --------------------/17. Natural Language Processing in R - Step 3.srt 10KB
  460. 36. Artificial Neural Networks/18. ANN in R - Step 2.srt 10KB
  461. 33. Thompson Sampling/4. Thompson Sampling in Python - Step 1.srt 10KB
  462. 9. Support Vector Regression (SVR)/6. SVR in Python - Step 3.srt 10KB
  463. 16. Logistic Regression/7. Logistic Regression in Python - Step 5.srt 9KB
  464. 20. Naive Bayes/3. Naive Bayes Intuition (Challenge Reveal).srt 9KB
  465. 32. Upper Confidence Bound (UCB)/8. Upper Confidence Bound in Python - Step 5.srt 9KB
  466. 26. K-Means Clustering/8. K-Means Clustering in Python - Step 4.srt 9KB
  467. 24. Evaluating Classification Models Performance/5. CAP Curve Analysis.srt 9KB
  468. 1. Welcome to the course!/5. Why Machine Learning is the Future.srt 9KB
  469. 37. Convolutional Neural Networks/4. Step 1(b) - ReLU Layer.srt 9KB
  470. 39. Principal Component Analysis (PCA)/4. PCA in Python - Step 2.srt 9KB
  471. 1. Welcome to the course!/10. Installing R and R Studio (Mac, Linux & Windows).srt 9KB
  472. 4. Data Preprocessing in R/6. Taking care of Missing Data.srt 9KB
  473. 16. Logistic Regression/10. Logistic Regression in R - Step 1.srt 9KB
  474. 6. Simple Linear Regression/10. Simple Linear Regression in R - Step 2.srt 9KB
  475. 4. Data Preprocessing in R/7. Encoding Categorical Data.srt 9KB
  476. 34. -------------------- Part 7 Natural Language Processing --------------------/20. Natural Language Processing in R - Step 6.srt 8KB
  477. 4. Data Preprocessing in R/10. Data Preprocessing Template.srt 8KB
  478. 6. Simple Linear Regression/1. Simple Linear Regression Intuition - Step 1.srt 8KB
  479. 18. Support Vector Machine (SVM)/5.1 SVM.zip 8KB
  480. 27. Hierarchical Clustering/10. Hierarchical Clustering in R - Step 2.srt 8KB
  481. 30. Eclat/1. Eclat Intuition.srt 8KB
  482. 17. K-Nearest Neighbors (K-NN)/1. K-Nearest Neighbor Intuition.srt 8KB
  483. 34. -------------------- Part 7 Natural Language Processing --------------------/22. Natural Language Processing in R - Step 8.srt 8KB
  484. 8. Polynomial Regression/1. Polynomial Regression Intuition.srt 8KB
  485. 6. Simple Linear Regression/9. Simple Linear Regression in R - Step 1.srt 8KB
  486. 10. Decision Tree Regression/4. Decision Tree Regression in Python - Step 2.srt 8KB
  487. 24. Evaluating Classification Models Performance/2. Confusion Matrix.srt 8KB
  488. 16. Logistic Regression/12. Logistic Regression in R - Step 3.srt 7KB
  489. 6. Simple Linear Regression/6. Simple Linear Regression in Python - Step 3.srt 7KB
  490. 36. Artificial Neural Networks/9. Business Problem Description.srt 7KB
  491. 12. Evaluating Regression Models Performance/1. R-Squared Intuition.srt 7KB
  492. 36. Artificial Neural Networks/8. Backpropagation.srt 7KB
  493. 7. Multiple Linear Regression/17. Multiple Linear Regression in R - Step 3.srt 7KB
  494. 22. Random Forest Classification/1. Random Forest Classification Intuition.srt 7KB
  495. 16. Logistic Regression/16. R Classification Template.srt 7KB
  496. 32. Upper Confidence Bound (UCB)/5. Upper Confidence Bound in Python - Step 2.srt 6KB
  497. 27. Hierarchical Clustering/9. Hierarchical Clustering in R - Step 1.srt 6KB
  498. 37. Convolutional Neural Networks/8. Summary.srt 6KB
  499. 34. -------------------- Part 7 Natural Language Processing --------------------/3. Types of Natural Language Processing.srt 6KB
  500. 9. Support Vector Regression (SVR)/2. Heads-up on non-linear SVR.srt 6KB
  501. 7. Multiple Linear Regression/1. Dataset + Business Problem Description.srt 6KB
  502. 3. Data Preprocessing in Python/3. Importing the Libraries.srt 6KB
  503. 34. -------------------- Part 7 Natural Language Processing --------------------/21. Natural Language Processing in R - Step 7.srt 6KB
  504. 6. Simple Linear Regression/11. Simple Linear Regression in R - Step 3.srt 6KB
  505. 1. Welcome to the course!/1. Applications of Machine Learning.srt 5KB
  506. 33. Thompson Sampling/10. Thompson Sampling in R - Step 2.srt 5KB
  507. 37. Convolutional Neural Networks/1. Plan of attack.srt 5KB
  508. 40. Linear Discriminant Analysis (LDA)/1. Linear Discriminant Analysis (LDA) Intuition.srt 5KB
  509. 39. Principal Component Analysis (PCA)/1. Principal Component Analysis (PCA) Intuition.srt 5KB
  510. 19. Kernel SVM/4. Types of Kernel Functions.srt 5KB
  511. 10. Decision Tree Regression/5. Decision Tree Regression in Python - Step 3.srt 5KB
  512. 45. Bonus Lectures/1. YOUR SPECIAL BONUS.html 5KB
  513. 27. Hierarchical Clustering/11. Hierarchical Clustering in R - Step 3.srt 5KB
  514. 34. -------------------- Part 7 Natural Language Processing --------------------/18. Natural Language Processing in R - Step 4.srt 5KB
  515. 34. -------------------- Part 7 Natural Language Processing --------------------/2. NLP Intuition.srt 5KB
  516. 4. Data Preprocessing in R/5. Importing the Dataset.srt 5KB
  517. 32. Upper Confidence Bound (UCB)/14. Upper Confidence Bound in R - Step 4.srt 4KB
  518. 19. Kernel SVM/1. Kernel SVM Intuition.srt 4KB
  519. 16. Logistic Regression/11. Logistic Regression in R - Step 2.srt 4KB
  520. 6. Simple Linear Regression/2. Simple Linear Regression Intuition - Step 2.srt 4KB
  521. 27. Hierarchical Clustering/13. Hierarchical Clustering in R - Step 5.srt 4KB
  522. 36. Artificial Neural Networks/1. Plan of attack.srt 4KB
  523. 16. Logistic Regression/13. Logistic Regression in R - Step 4.srt 4KB
  524. 27. Hierarchical Clustering/12. Hierarchical Clustering in R - Step 4.srt 4KB
  525. 1. Welcome to the course!/14. Your Shortcut To Becoming A Better Data Scientist!.html 4KB
  526. 7. Multiple Linear Regression/5. Multiple Linear Regression Intuition - Step 4.srt 4KB
  527. 7. Multiple Linear Regression/13. Multiple Linear Regression in Python - Backward Elimination.html 3KB
  528. 24. Evaluating Classification Models Performance/6. Conclusion of Part 3 - Classification.html 3KB
  529. 1. Welcome to the course!/6. Important notes, tips & tricks for this course.html 3KB
  530. 34. -------------------- Part 7 Natural Language Processing --------------------/19. Natural Language Processing in R - Step 5.srt 3KB
  531. 24. Evaluating Classification Models Performance/3. Accuracy Paradox.srt 3KB
  532. 4. Data Preprocessing in R/4. Dataset Description.srt 3KB
  533. 1. Welcome to the course!/13. FAQBot!.html 3KB
  534. 37. Convolutional Neural Networks/6. Step 3 - Flattening.srt 3KB
  535. 4. Data Preprocessing in R/2. Getting Started.srt 2KB
  536. 44. XGBoost/5. THANK YOU Bonus Video.srt 2KB
  537. 33. Thompson Sampling/8. Additional Resource for this Section.html 2KB
  538. 1. Welcome to the course!/8. GET ALL THE CODES AND DATASETS HERE!.html 2KB
  539. 13. Regression Model Selection in Python/4. Conclusion of Part 2 - Regression.html 2KB
  540. 14. Regression Model Selection in R/3. Conclusion of Part 2 - Regression.html 2KB
  541. 34. -------------------- Part 7 Natural Language Processing --------------------/1. Welcome to Part 7 - Natural Language Processing.html 2KB
  542. 7. Multiple Linear Regression/2. Multiple Linear Regression Intuition - Step 1.srt 2KB
  543. 31. -------------------- Part 6 Reinforcement Learning --------------------/1. Welcome to Part 6 - Reinforcement Learning.html 2KB
  544. 1. Welcome to the course!/7. This PDF resource will help you a lot!.html 1KB
  545. 3. Data Preprocessing in Python/5. For Python learners, summary of Object-oriented programming classes & objects.html 1KB
  546. 7. Multiple Linear Regression/3. Multiple Linear Regression Intuition - Step 2.srt 1KB
  547. 34. -------------------- Part 7 Natural Language Processing --------------------/25. Homework Challenge.html 1KB
  548. 1. Welcome to the course!/2. BONUS #1 Learning Paths.html 1KB
  549. 34. -------------------- Part 7 Natural Language Processing --------------------/14. Homework Challenge.html 1KB
  550. 16. Logistic Regression/14. Warning - Update.html 1KB
  551. 38. -------------------- Part 9 Dimensionality Reduction --------------------/1. Welcome to Part 9 - Dimensionality Reduction.html 1KB
  552. 7. Multiple Linear Regression/14. Multiple Linear Regression in Python - BONUS.html 1KB
  553. 44. XGBoost/3. Model Selection and Boosting BONUS.html 1KB
  554. 6. Simple Linear Regression/8. Simple Linear Regression in Python - BONUS.html 1KB
  555. 1. Welcome to the course!/11. BONUS Meet your instructors.html 1KB
  556. 34. -------------------- Part 7 Natural Language Processing --------------------/13. Natural Language Processing in Python - BONUS.html 1KB
  557. 36. Artificial Neural Networks/21. Deep Learning BONUS #1.html 1011B
  558. 23. Classification Model Selection in Python/1. Make sure you have this Model Selection folder ready.html 985B
  559. 13. Regression Model Selection in Python/1. Make sure you have this Model Selection folder ready.html 973B
  560. 37. Convolutional Neural Networks/17. Deep Learning BONUS #2.html 923B
  561. 34. -------------------- Part 7 Natural Language Processing --------------------/26. BONUS NLP BERT.html 906B
  562. 42. -------------------- Part 10 Model Selection & Boosting --------------------/1. Welcome to Part 10 - Model Selection & Boosting.html 899B
  563. 5. -------------------- Part 2 Regression --------------------/1. Welcome to Part 2 - Regression.html 875B
  564. 35. -------------------- Part 8 Deep Learning --------------------/1. Welcome to Part 8 - Deep Learning.html 870B
  565. 15. -------------------- Part 3 Classification --------------------/1. Welcome to Part 3 - Classification.html 831B
  566. 16. Logistic Regression/17. Machine Learning Regression and Classification BONUS.html 819B
  567. 37. Convolutional Neural Networks/10. Make sure you have your dataset ready.html 797B
  568. 10. Decision Tree Regression/2. Make sure you have your Machine Learning A-Z folder ready.html 776B
  569. 11. Random Forest Regression/2. Make sure you have your Machine Learning A-Z folder ready.html 776B
  570. 16. Logistic Regression/2. Make sure you have your Machine Learning A-Z folder ready.html 776B
  571. 17. K-Nearest Neighbors (K-NN)/2. Make sure you have your Machine Learning A-Z folder ready.html 776B
  572. 18. Support Vector Machine (SVM)/3. Make sure you have your Machine Learning A-Z folder ready.html 776B
  573. 19. Kernel SVM/6. Make sure you have your Machine Learning A-Z folder ready.html 776B
  574. 20. Naive Bayes/5. Make sure you have your Machine Learning A-Z folder ready.html 776B
  575. 21. Decision Tree Classification/2. Make sure you have your Machine Learning A-Z folder ready.html 776B
  576. 22. Random Forest Classification/2. Make sure you have your Machine Learning A-Z folder ready.html 776B
  577. 26. K-Means Clustering/4. Make sure you have your Machine Learning A-Z folder ready.html 776B
  578. 27. Hierarchical Clustering/5. Make sure you have your Machine Learning A-Z folder ready.html 776B
  579. 29. Apriori/2. Make sure you have your Machine Learning A-Z folder ready.html 776B
  580. 30. Eclat/2. Make sure you have your Machine Learning A-Z folder ready.html 776B
  581. 32. Upper Confidence Bound (UCB)/3. Make sure you have your Machine Learning A-Z folder ready.html 776B
  582. 33. Thompson Sampling/3. Make sure you have your Machine Learning A-Z folder ready.html 776B
  583. 34. -------------------- Part 7 Natural Language Processing --------------------/6. Make sure you have your Machine Learning A-Z folder ready.html 776B
  584. 36. Artificial Neural Networks/10. Make sure you have your Machine Learning A-Z folder ready.html 776B
  585. 39. Principal Component Analysis (PCA)/2. Make sure you have your Machine Learning A-Z folder ready.html 776B
  586. 40. Linear Discriminant Analysis (LDA)/2. Make sure you have your Machine Learning A-Z folder ready.html 776B
  587. 41. Kernel PCA/1. Make sure you have your Machine Learning A-Z folder ready.html 776B
  588. 43. Model Selection/1. Make sure you have your Machine Learning A-Z folder ready.html 776B
  589. 44. XGBoost/1. Make sure you have your Machine Learning A-Z folder ready.html 776B
  590. 6. Simple Linear Regression/3. Make sure you have your Machine Learning A-Z folder ready.html 776B
  591. 7. Multiple Linear Regression/8. Make sure you have your Machine Learning A-Z folder ready.html 776B
  592. 8. Polynomial Regression/2. Make sure you have your Machine Learning A-Z folder ready.html 776B
  593. 9. Support Vector Regression (SVR)/3. Make sure you have your Machine Learning A-Z folder ready.html 776B
  594. 25. -------------------- Part 4 Clustering --------------------/1. Welcome to Part 4 - Clustering.html 734B
  595. 7. Multiple Linear Regression/20. Multiple Linear Regression in R - Automatic Backward Elimination.html 726B
  596. 3. Data Preprocessing in Python/1. Make sure you have your Machine Learning A-Z folder ready.html 664B
  597. 16. Logistic Regression/19. BONUS Logistic Regression Practical Case Study.html 619B
  598. 4. Data Preprocessing in R/1. Welcome.html 608B
  599. 1. Welcome to the course!/12. Some Additional Resources.html 553B
  600. 36. Artificial Neural Networks/22. BONUS ANN Case Study.html 544B
  601. 36. Artificial Neural Networks/12. Check out our free course on ANN for Regression.html 533B
  602. 2. -------------------- Part 1 Data Preprocessing --------------------/1. Welcome to Part 1 - Data Preprocessing.html 531B
  603. 27. Hierarchical Clustering/15. Conclusion of Part 4 - Clustering.html 516B
  604. 1. Welcome to the course!/4. BONUS #3 Regression Types.html 511B
  605. 1. Welcome to the course!/3. BONUS #2 ML vs. DL vs. AI - What’s the Difference.html 499B
  606. 4. Data Preprocessing in R/3. Make sure you have your dataset ready.html 465B
  607. 28. -------------------- Part 5 Association Rule Learning --------------------/1. Welcome to Part 5 - Association Rule Learning.html 425B
  608. 0. Websites you may like/[FCS Forum].url 133B
  609. 0. Websites you may like/[FreeCourseSite.com].url 127B
  610. 16. Logistic Regression/18. Logistic Regression.html 125B
  611. 18. Support Vector Machine (SVM)/1. K-Nearest Neighbor.html 125B
  612. 27. Hierarchical Clustering/1. K-Means Clustering.html 125B
  613. 27. Hierarchical Clustering/14. Hierarchical Clustering.html 125B
  614. 6. Simple Linear Regression/13. Simple Linear Regression.html 125B
  615. 7. Multiple Linear Regression/21. Multiple Linear Regression.html 125B
  616. 0. Websites you may like/[CourseClub.ME].url 122B