[] Udemy - Machine Learning Basics Building Regression Model in Python 收录时间:2020-01-22 15:54:33 文件大小:3GB 下载次数:134 最近下载:2021-01-14 20:01:26 磁力链接: magnet:?xt=urn:btih:ebb55baacfcefc255b458060844c8129e61fb0e8 立即下载 复制链接 文件列表 6. Linear Regression/18. Ridge regression and Lasso in Python.mp4 157MB 4. Introduction to Machine Learning/1. Introduction to Machine Learning.mp4 124MB 5. Data Preprocessing/16. Bi-variate analysis and Variable transformation.mp4 114MB 6. Linear Regression/3. Assessing accuracy of predicted coefficients.mp4 104MB 6. Linear Regression/10. Multiple Linear Regression in Python.mp4 88MB 6. Linear Regression/16. Subset selection techniques.mp4 87MB 5. Data Preprocessing/10. Outlier Treatment in Python.mp4 87MB 2. Basics of Statistics/3. Describing data Graphically.mp4 82MB 5. Data Preprocessing/23. Correlation Analysis.mp4 81MB 3. Setting up Python and Jupyter Notebook/5. Strings in Python Python Basics.mp4 81MB 6. Linear Regression/5. Simple Linear Regression in Python.vtt 79MB 6. Linear Regression/5. Simple Linear Regression in Python.mp4 79MB 5. Data Preprocessing/3. The Dataset and the Data Dictionary.mp4 79MB 5. Data Preprocessing/7. EDD in Python.mp4 75MB 3. Setting up Python and Jupyter Notebook/6. Lists, Tuples and Directories Python Basics.mp4 74MB 3. Setting up Python and Jupyter Notebook/2. Opening Jupyter Notebook.mp4 73MB 5. Data Preprocessing/24. Correlation Analysis in Python.mp4 68MB 6. Linear Regression/8. The F - statistic.mp4 64MB 6. Linear Regression/14. Test train split in Python.mp4 58MB 3. Setting up Python and Jupyter Notebook/8. Working with Panda Library of Python.mp4 56MB 3. Setting up Python and Jupyter Notebook/7. Working with Numpy Library of Python.mp4 54MB 5. Data Preprocessing/17. Variable transformation and deletion in Python.mp4 53MB 3. Setting up Python and Jupyter Notebook/3. Introduction to Jupyter.mp4 51MB 6. Linear Regression/2. Basic Equations and Ordinary Least Squares (OLS) method.mp4 50MB 6. Linear Regression/4. Assessing Model Accuracy RSE and R squared.mp4 50MB 6. Linear Regression/12. Test-train split.mp4 49MB 3. Setting up Python and Jupyter Notebook/9. Working with Seaborn Library of Python.mp4 49MB 1. Introduction/2. Course contents.mp4 48MB 2. Basics of Statistics/4. Measures of Centers.mp4 46MB 4. Introduction to Machine Learning/2. Building a Machine Learning Model.mp4 45MB 5. Data Preprocessing/20. Dummy variable creation Handling qualitative data.mp4 41MB 6. Linear Regression/7. Multiple Linear Regression.mp4 39MB 6. Linear Regression/17. Shrinkage methods Ridge and Lasso.mp4 39MB 5. Data Preprocessing/21. Dummy variable creation in Python.mp4 34MB 5. Data Preprocessing/4. Importing Data in Python.mp4 32MB 6. Linear Regression/13. Bias Variance trade-off.mp4 30MB 5. Data Preprocessing/13. Missing Value Imputation in Python.mp4 29MB 2. Basics of Statistics/6. Measures of Dispersion.mp4 28MB 5. Data Preprocessing/9. Outlier Treatment.mp4 28MB 5. Data Preprocessing/12. Missing Value Imputation.mp4 28MB 5. Data Preprocessing/6. Univariate analysis and EDD.mp4 27MB 6. Linear Regression/9. Interpreting results of Categorical variables.mp4 27MB 2. Basics of Statistics/1. Types of Data.mp4 26MB 5. Data Preprocessing/1. Gathering Business Knowledge.mp4 25MB 5. Data Preprocessing/19. Non-usable variables.mp4 24MB 5. Data Preprocessing/2. Data Exploration.mp4 23MB 5. Data Preprocessing/15. Seasonality in Data.mp4 21MB 6. Linear Regression/15. Linear models other than OLS.mp4 19MB 3. Setting up Python and Jupyter Notebook/1. Installing Python and Anaconda.mp4 19MB 1. Introduction/1. Welcome to the course!.mp4 16MB 3. Setting up Python and Jupyter Notebook/4. Arithmetic operators in Python Python Basics.mp4 16MB 2. Basics of Statistics/2. Types of Statistics.mp4 13MB 6. Linear Regression/1. The Problem Statement.mp4 11MB 4. Introduction to Machine Learning/1.1 Lecture_machineLearning.pdf.pdf 992KB 4. Introduction to Machine Learning/2.1 Lecture_machineLearning.pdf.pdf 992KB 1. Introduction/2.1 00_Introduction_01.pdf.pdf 791KB 2. Basics of Statistics/5.1 Exercise 1.pdf.pdf 554KB 2. Basics of Statistics/7.1 Exercise 2.pdf.pdf 470KB 5. Data Preprocessing/16.1 04_07_Variable_Transformation.pdf.pdf 423KB 5. Data Preprocessing/15.1 04_07_PDE_Seasonality.pdf.pdf 364KB 5. Data Preprocessing/9.1 04_06_PDE_Outlier_Treatment.pdf.pdf 355KB 5. Data Preprocessing/6.1 03_04_PDE_Univariate_Analysis_Uni.pdf.pdf 333KB 6. Linear Regression/3.1 05_03_Simple_lin_reg_Accuracy.pdf.pdf 333KB 6. Linear Regression/4.1 05_03_Simple_lin_reg_Accuracy.pdf.pdf 333KB 5. Data Preprocessing/3.1 03_03_PDE_Raw_Data_Analysis_Uni.pdf.pdf 332KB 6. Linear Regression/8.1 05_05_F_stat.pdf.pdf 328KB 5. Data Preprocessing/2.1 03_02_PDE_Data_exploration.pdf.pdf 323KB 2. Basics of Statistics/3.1 01_03_Lecture_DataSummaryandGraph.pdf.pdf 318KB 5. Data Preprocessing/12.1 04_05_PDE_Missing_value.pdf.pdf 316KB 2. Basics of Statistics/4.1 01_04_Lecture_Centers.pdf.pdf 313KB 6. Linear Regression/2.1 05_02_Simple_lin_reg.pdf.pdf 285KB 5. Data Preprocessing/23.1 04_10_Correlation.pdf.pdf 257KB 6. Linear Regression/1.1 05_01_Intro.pdf.pdf 239KB 6. Linear Regression/12.1 05_12_Test_Train.pdf.pdf 239KB 6. Linear Regression/7.1 05_04_Multiple_lin_reg.pdf.pdf 220KB 2. Basics of Statistics/6.1 01_05_Lecture_Dispersion.pdf.pdf 211KB 6. Linear Regression/13.1 05_13_Bias_Var_tradeoff.pdf.pdf 202KB 6. Linear Regression/16.1 05_10_Subset_Selection.pdf.pdf 199KB 6. Linear Regression/17.1 05_11_Shrinkage_methods.pdf.pdf 188KB 2. Basics of Statistics/1.1 01_01_Lecture_TypesOfData.pdf.pdf 178KB 2. Basics of Statistics/2.1 01_02_Lecture_TypesOfStatistics.pdf.pdf 172KB 5. Data Preprocessing/20.1 04_11_Dummy_Var.pdf.pdf 163KB 6. Linear Regression/15.1 05_09_Other_lin_model.pdf.pdf 157KB 6. Linear Regression/9.1 05_06_Cat_var.pdf.pdf 155KB 5. Data Preprocessing/1.1 03_01_PDE_Business_knowledge.pdf.pdf 154KB 5. Data Preprocessing/19.1 04_08_PDE_Non_Usable_var.pdf.pdf 138KB 3. Setting up Python and Jupyter Notebook/8.1 Customer.csv.csv 64KB 5. Data Preprocessing/3.2 House_Price.csv.csv 53KB 5. Data Preprocessing/4.1 House_Price.csv.csv 53KB 5. Data Preprocessing/5.1 Movie_collection_train.csv.csv 43KB 6. Linear Regression/18. Ridge regression and Lasso in Python.vtt 16KB 4. Introduction to Machine Learning/1. Introduction to Machine Learning.vtt 16KB 5. Data Preprocessing/16. Bi-variate analysis and Variable transformation.vtt 16KB 3. Setting up Python and Jupyter Notebook/6. Lists, Tuples and Directories Python Basics.vtt 15KB 3. Setting up Python and Jupyter Notebook/5. Strings in Python Python Basics.vtt 14KB 6. Linear Regression/3. Assessing accuracy of predicted coefficients.vtt 14KB 6. Linear Regression/20.1 Movie_collection_test.csv.csv 12KB 2. Basics of Statistics/3. Describing data Graphically.vtt 11KB 6. Linear Regression/16. Subset selection techniques.vtt 11KB 5. Data Preprocessing/10. Outlier Treatment in Python.vtt 11KB 6. Linear Regression/10. Multiple Linear Regression in Python.vtt 11KB 3. Setting up Python and Jupyter Notebook/3. Introduction to Jupyter.vtt 11KB 5. Data Preprocessing/23. Correlation Analysis.vtt 10KB 3. Setting up Python and Jupyter Notebook/7. Working with Numpy Library of Python.vtt 9KB 5. Data Preprocessing/7. EDD in Python.vtt 9KB 6. Linear Regression/12. Test-train split.vtt 9KB 6. Linear Regression/2. Basic Equations and Ordinary Least Squares (OLS) method.vtt 9KB 4. Introduction to Machine Learning/2. Building a Machine Learning Model.vtt 9KB 1. Introduction/2. Course contents.vtt 8KB 3. Setting up Python and Jupyter Notebook/2. Opening Jupyter Notebook.vtt 8KB 6. Linear Regression/8. The F - statistic.vtt 8KB 3. Setting up Python and Jupyter Notebook/8. Working with Panda Library of Python.vtt 7KB 6. Linear Regression/17. Shrinkage methods Ridge and Lasso.vtt 7KB 6. Linear Regression/4. Assessing Model Accuracy RSE and R squared.vtt 7KB 6. Linear Regression/14. Test train split in Python.vtt 7KB 5. Data Preprocessing/3. The Dataset and the Data Dictionary.vtt 7KB 3. Setting up Python and Jupyter Notebook/9. Working with Seaborn Library of Python.vtt 7KB 5. Data Preprocessing/17. Variable transformation and deletion in Python.vtt 6KB 2. Basics of Statistics/4. Measures of Centers.vtt 6KB 5. Data Preprocessing/24. Correlation Analysis in Python.vtt 6KB 6. Linear Regression/13. Bias Variance trade-off.vtt 6KB 6. Linear Regression/7. Multiple Linear Regression.vtt 5KB 5. Data Preprocessing/4. Importing Data in Python.vtt 5KB 5. Data Preprocessing/19. Non-usable variables.vtt 5KB 5. Data Preprocessing/21. Dummy variable creation in Python.vtt 5KB 2. Basics of Statistics/6. Measures of Dispersion.vtt 5KB 6. Linear Regression/9. Interpreting results of Categorical variables.vtt 5KB 2. Basics of Statistics/1. Types of Data.vtt 4KB 5. Data Preprocessing/20. Dummy variable creation Handling qualitative data.vtt 4KB 5. Data Preprocessing/9. Outlier Treatment.vtt 4KB 6. Linear Regression/15. Linear models other than OLS.vtt 4KB 5. Data Preprocessing/12. Missing Value Imputation.vtt 4KB 5. Data Preprocessing/13. Missing Value Imputation in Python.vtt 4KB 3. Setting up Python and Jupyter Notebook/4. Arithmetic operators in Python Python Basics.vtt 4KB 5. Data Preprocessing/1. Gathering Business Knowledge.vtt 3KB 5. Data Preprocessing/15. Seasonality in Data.vtt 3KB 1. Introduction/1. Welcome to the course!.vtt 3KB 5. Data Preprocessing/2. Data Exploration.vtt 3KB 5. Data Preprocessing/6. Univariate analysis and EDD.vtt 3KB 2. Basics of Statistics/2. Types of Statistics.vtt 3KB 3. Setting up Python and Jupyter Notebook/1. Installing Python and Anaconda.vtt 2KB 6. Linear Regression/21. Course Conclusion.html 2KB 6. Linear Regression/1. The Problem Statement.vtt 1KB 5. Data Preprocessing/5. Project exercise 1.html 431B 6. Linear Regression/19. Project Exercise 10.html 424B 2. Basics of Statistics/5. Practice Exercise 1.html 357B 6. Linear Regression/11. Project Exercise 9.html 327B 6. Linear Regression/6. Project Exercise 8.html 322B 6. Linear Regression/20. Final Project Exercise.html 301B 2. Basics of Statistics/7. Practice Exercise 2.html 300B 5. Data Preprocessing/25. Project Exercise 7.html 288B 5. Data Preprocessing/18. Project Exercise 5.html 285B 5. Data Preprocessing/14. Project Exercise 4.html 238B 5. Data Preprocessing/11. Project Exercise 3.html 233B 5. Data Preprocessing/22. Project Exercise 6.html 202B 5. Data Preprocessing/8. Project Exercise 2.html 177B 4. Introduction to Machine Learning/3. Introduction to Machine learning quiz.html 166B [DesireCourse.Com].url 51B