589689.xyz

[UdemyCourseDownloader] Artificial Intelligence Masterclass

  • 收录时间:2020-02-29 18:28:38
  • 文件大小:6GB
  • 下载次数:22
  • 最近下载:2021-01-13 08:08:19
  • 磁力链接:

文件列表

  1. 12. The Final Run/1. The Whole Implementation.mp4 274MB
  2. 1. Introduction/2. Introduction + Course Structure + Demo.mp4 195MB
  3. 3. Step 2 - Convolutional Neural Network/8. Step 4 - Full Connection.mp4 194MB
  4. 7. Step 6 - Recurrent Neural Network/6. LSTM Practical Intuition.mp4 187MB
  5. 6. Step 5 - Implementing the CNN-VAE/7. Implementing the Training operations.mp4 187MB
  6. 9. Step 8 - Implementing the MDN-RNN/9. Implementing the Training operations (Part 1).mp4 177MB
  7. 9. Step 8 - Implementing the MDN-RNN/10. Implementing the Training operations (Part 2).mp4 163MB
  8. 12. The Final Run/3. Installing the required packages.mp4 159MB
  9. 10. Step 9 - Reinforcement Learning/3. A Pseudo Implementation of Reinforcement Learning for the Full World Model.mp4 154MB
  10. 11. Step 10 - Deep NeuroEvolution/4. Genetic Algorithms.mp4 149MB
  11. 9. Step 8 - Implementing the MDN-RNN/7. Building the MDN - Getting the Input, Hidden Layer and Output of the MDN.mp4 147MB
  12. 11. Step 10 - Deep NeuroEvolution/5. Covariance-Matrix Adaptation Evolution Strategy (CMA-ES).mp4 144MB
  13. 11. Step 10 - Deep NeuroEvolution/6. Parameter-Exploring Policy Gradients (PEPG).mp4 144MB
  14. 3. Step 2 - Convolutional Neural Network/6. Step 2 - Pooling.mp4 140MB
  15. 7. Step 6 - Recurrent Neural Network/5. LSTMs.mp4 137MB
  16. 1. Introduction/4. Your Three Best Resources.mp4 134MB
  17. 6. Step 5 - Implementing the CNN-VAE/4. Building the Encoder part of the VAE.mp4 134MB
  18. 9. Step 8 - Implementing the MDN-RNN/5. Building the RNN - Setting up the Input, Target, and Output of the RNN.mp4 131MB
  19. 9. Step 8 - Implementing the MDN-RNN/4. Building the RNN - Creating an LSTM cell with Dropout.mp4 127MB
  20. 9. Step 8 - Implementing the MDN-RNN/6. Building the RNN - Getting the Deterministic Output of the RNN.mp4 125MB
  21. 12. The Final Run/4. The Final Race Human Intelligence vs. Artificial Intelligence.mp4 125MB
  22. 7. Step 6 - Recurrent Neural Network/3. What are Recurrent Neural Networks.mp4 121MB
  23. 11. Step 10 - Deep NeuroEvolution/3. Evolution Strategies.mp4 119MB
  24. 3. Step 2 - Convolutional Neural Network/10. Softmax & Cross-Entropy.mp4 118MB
  25. 2. Step 1 - Artificial Neural Network/6. How do Neural Networks learn.mp4 112MB
  26. 7. Step 6 - Recurrent Neural Network/4. The Vanishing Gradient Problem.mp4 111MB
  27. 9. Step 8 - Implementing the MDN-RNN/8. Building the MDN - Getting the MDN parameters.mp4 109MB
  28. 11. Step 10 - Deep NeuroEvolution/2. Deep NeuroEvolution.mp4 109MB
  29. 11. Step 10 - Deep NeuroEvolution/7. OpenAI Evolution Strategy.mp4 108MB
  30. 3. Step 2 - Convolutional Neural Network/3. What are Convolutional Neural Networks.mp4 108MB
  31. 9. Step 8 - Implementing the MDN-RNN/2. Initializing all the parameters and variables of the MDN-RNN class.mp4 99MB
  32. 2. Step 1 - Artificial Neural Network/3. The Neuron.mp4 99MB
  33. 3. Step 2 - Convolutional Neural Network/4. Step 1 - The Convolution Operation.mp4 98MB
  34. 4. Step 3 - AutoEncoder/3. What are AutoEncoders.mp4 95MB
  35. 6. Step 5 - Implementing the CNN-VAE/6. Building the Decoder part of the VAE.mp4 93MB
  36. 8. Step 7 - Mixture Density Network/2. Introduction to the MDN-RNN.mp4 83MB
  37. 2. Step 1 - Artificial Neural Network/5. How do Neural Networks work.mp4 82MB
  38. 6. Step 5 - Implementing the CNN-VAE/5. Building the V part of the VAE.mp4 80MB
  39. 9. Step 8 - Implementing the MDN-RNN/3. Building the RNN - Gathering the parameters.mp4 77MB
  40. 5. Step 4 - Variational AutoEncoder/2. Introduction to the VAE.mp4 73MB
  41. 6. Step 5 - Implementing the CNN-VAE/3. Initializing all the parameters and variables of the CNN-VAE class.mp4 72MB
  42. 10. Step 9 - Reinforcement Learning/2. What is Reinforcement Learning.mp4 69MB
  43. 2. Step 1 - Artificial Neural Network/8. Stochastic Gradient Descent.mp4 67MB
  44. 8. Step 7 - Mixture Density Network/3. Mixture Density Networks.mp4 65MB
  45. 2. Step 1 - Artificial Neural Network/7. Gradient Descent.mp4 61MB
  46. 6. Step 5 - Implementing the CNN-VAE/2. Introduction to Step 5.mp4 59MB
  47. 4. Step 3 - AutoEncoder/7. Sparse AutoEncoders.mp4 57MB
  48. 3. Step 2 - Convolutional Neural Network/5. Step 1 Bis - The ReLU Layer.mp4 53MB
  49. 4. Step 3 - AutoEncoder/5. Training an AutoEncoder.mp4 50MB
  50. 2. Step 1 - Artificial Neural Network/4. The Activation Function.mp4 45MB
  51. 8. Step 7 - Mixture Density Network/4. VAE + MDN-RNN Visualization.mp4 45MB
  52. 2. Step 1 - Artificial Neural Network/9. Backpropagation.mp4 43MB
  53. 3. Step 2 - Convolutional Neural Network/9. Summary.mp4 30MB
  54. 12. The Final Run/5. THANK YOU bonus video.mp4 29MB
  55. 4. Step 3 - AutoEncoder/6. Overcomplete Hidden Layers.mp4 28MB
  56. 5. Step 4 - Variational AutoEncoder/4. Reparameterization Trick.mp4 26MB
  57. 5. Step 4 - Variational AutoEncoder/3. Variational AutoEncoders.mp4 26MB
  58. 4. Step 3 - AutoEncoder/8. Denoising AutoEncoders.mp4 24MB
  59. 1. Introduction/1. Updates on Udemy Reviews.mp4 22MB
  60. 3. Step 2 - Convolutional Neural Network/2. Plan of Attack.mp4 22MB
  61. 4. Step 3 - AutoEncoder/9. Contractive AutoEncoders.mp4 21MB
  62. 7. Step 6 - Recurrent Neural Network/7. LSTM Variations.mp4 20MB
  63. 12. The Final Run/2.1 AI Masterclass.zip.zip 17MB
  64. 4. Step 3 - AutoEncoder/10. Stacked AutoEncoders.mp4 16MB
  65. 2. Step 1 - Artificial Neural Network/2. Plan of Attack.mp4 16MB
  66. 4. Step 3 - AutoEncoder/2. Plan of Attack.mp4 16MB
  67. 4. Step 3 - AutoEncoder/11. Deep AutoEncoders.mp4 12MB
  68. 7. Step 6 - Recurrent Neural Network/2. Plan of Attack.mp4 10MB
  69. 4. Step 3 - AutoEncoder/4. A Note on Biases.mp4 9MB
  70. 3. Step 2 - Convolutional Neural Network/7. Step 3 - Flattening.mp4 8MB
  71. 3. Step 2 - Convolutional Neural Network/8. Step 4 - Full Connection.srt 28KB
  72. 12. The Final Run/1. The Whole Implementation.srt 28KB
  73. 7. Step 6 - Recurrent Neural Network/5. LSTMs.srt 28KB
  74. 10. Step 9 - Reinforcement Learning/3. A Pseudo Implementation of Reinforcement Learning for the Full World Model.srt 27KB
  75. 6. Step 5 - Implementing the CNN-VAE/4. Building the Encoder part of the VAE.srt 26KB
  76. 3. Step 2 - Convolutional Neural Network/10. Softmax & Cross-Entropy.srt 25KB
  77. 3. Step 2 - Convolutional Neural Network/8. Step 4 - Full Connection.vtt 25KB
  78. 12. The Final Run/1. The Whole Implementation.vtt 25KB
  79. 2. Step 1 - Artificial Neural Network/3. The Neuron.srt 25KB
  80. 7. Step 6 - Recurrent Neural Network/5. LSTMs.vtt 25KB
  81. 7. Step 6 - Recurrent Neural Network/3. What are Recurrent Neural Networks.srt 24KB
  82. 10. Step 9 - Reinforcement Learning/3. A Pseudo Implementation of Reinforcement Learning for the Full World Model.vtt 24KB
  83. 6. Step 5 - Implementing the CNN-VAE/7. Implementing the Training operations.srt 23KB
  84. 3. Step 2 - Convolutional Neural Network/4. Step 1 - The Convolution Operation.srt 23KB
  85. 6. Step 5 - Implementing the CNN-VAE/4. Building the Encoder part of the VAE.vtt 23KB
  86. 3. Step 2 - Convolutional Neural Network/3. What are Convolutional Neural Networks.srt 22KB
  87. 3. Step 2 - Convolutional Neural Network/10. Softmax & Cross-Entropy.vtt 22KB
  88. 1. Introduction/2. Introduction + Course Structure + Demo.srt 22KB
  89. 9. Step 8 - Implementing the MDN-RNN/4. Building the RNN - Creating an LSTM cell with Dropout.srt 22KB
  90. 2. Step 1 - Artificial Neural Network/3. The Neuron.vtt 22KB
  91. 3. Step 2 - Convolutional Neural Network/6. Step 2 - Pooling.srt 21KB
  92. 7. Step 6 - Recurrent Neural Network/6. LSTM Practical Intuition.srt 21KB
  93. 7. Step 6 - Recurrent Neural Network/3. What are Recurrent Neural Networks.vtt 21KB
  94. 7. Step 6 - Recurrent Neural Network/4. The Vanishing Gradient Problem.srt 21KB
  95. 9. Step 8 - Implementing the MDN-RNN/9. Implementing the Training operations (Part 1).srt 20KB
  96. 3. Step 2 - Convolutional Neural Network/4. Step 1 - The Convolution Operation.vtt 20KB
  97. 6. Step 5 - Implementing the CNN-VAE/7. Implementing the Training operations.vtt 20KB
  98. 9. Step 8 - Implementing the MDN-RNN/5. Building the RNN - Setting up the Input, Target, and Output of the RNN.srt 20KB
  99. 3. Step 2 - Convolutional Neural Network/3. What are Convolutional Neural Networks.vtt 19KB
  100. 9. Step 8 - Implementing the MDN-RNN/4. Building the RNN - Creating an LSTM cell with Dropout.vtt 19KB
  101. 1. Introduction/2. Introduction + Course Structure + Demo.vtt 19KB
  102. 2. Step 1 - Artificial Neural Network/5. How do Neural Networks work.srt 19KB
  103. 2. Step 1 - Artificial Neural Network/6. How do Neural Networks learn.srt 19KB
  104. 9. Step 8 - Implementing the MDN-RNN/10. Implementing the Training operations (Part 2).srt 19KB
  105. 3. Step 2 - Convolutional Neural Network/6. Step 2 - Pooling.vtt 18KB
  106. 7. Step 6 - Recurrent Neural Network/6. LSTM Practical Intuition.vtt 18KB
  107. 7. Step 6 - Recurrent Neural Network/4. The Vanishing Gradient Problem.vtt 18KB
  108. 10. Step 9 - Reinforcement Learning/2. What is Reinforcement Learning.srt 18KB
  109. 9. Step 8 - Implementing the MDN-RNN/2. Initializing all the parameters and variables of the MDN-RNN class.srt 18KB
  110. 9. Step 8 - Implementing the MDN-RNN/9. Implementing the Training operations (Part 1).vtt 18KB
  111. 9. Step 8 - Implementing the MDN-RNN/5. Building the RNN - Setting up the Input, Target, and Output of the RNN.vtt 18KB
  112. 11. Step 10 - Deep NeuroEvolution/4. Genetic Algorithms.srt 18KB
  113. 12. The Final Run/3. Installing the required packages.srt 18KB
  114. 11. Step 10 - Deep NeuroEvolution/5. Covariance-Matrix Adaptation Evolution Strategy (CMA-ES).srt 17KB
  115. 6. Step 5 - Implementing the CNN-VAE/3. Initializing all the parameters and variables of the CNN-VAE class.srt 17KB
  116. 2. Step 1 - Artificial Neural Network/5. How do Neural Networks work.vtt 17KB
  117. 9. Step 8 - Implementing the MDN-RNN/7. Building the MDN - Getting the Input, Hidden Layer and Output of the MDN.srt 17KB
  118. 2. Step 1 - Artificial Neural Network/6. How do Neural Networks learn.vtt 17KB
  119. 9. Step 8 - Implementing the MDN-RNN/10. Implementing the Training operations (Part 2).vtt 16KB
  120. 11. Step 10 - Deep NeuroEvolution/6. Parameter-Exploring Policy Gradients (PEPG).srt 16KB
  121. 9. Step 8 - Implementing the MDN-RNN/6. Building the RNN - Getting the Deterministic Output of the RNN.srt 16KB
  122. 4. Step 3 - AutoEncoder/3. What are AutoEncoders.srt 16KB
  123. 10. Step 9 - Reinforcement Learning/2. What is Reinforcement Learning.vtt 16KB
  124. 12. The Final Run/4. The Final Race Human Intelligence vs. Artificial Intelligence.srt 16KB
  125. 9. Step 8 - Implementing the MDN-RNN/2. Initializing all the parameters and variables of the MDN-RNN class.vtt 16KB
  126. 11. Step 10 - Deep NeuroEvolution/4. Genetic Algorithms.vtt 15KB
  127. 11. Step 10 - Deep NeuroEvolution/5. Covariance-Matrix Adaptation Evolution Strategy (CMA-ES).vtt 15KB
  128. 11. Step 10 - Deep NeuroEvolution/2. Deep NeuroEvolution.srt 15KB
  129. 12. The Final Run/3. Installing the required packages.vtt 15KB
  130. 6. Step 5 - Implementing the CNN-VAE/3. Initializing all the parameters and variables of the CNN-VAE class.vtt 15KB
  131. 9. Step 8 - Implementing the MDN-RNN/7. Building the MDN - Getting the Input, Hidden Layer and Output of the MDN.vtt 15KB
  132. 11. Step 10 - Deep NeuroEvolution/6. Parameter-Exploring Policy Gradients (PEPG).vtt 15KB
  133. 9. Step 8 - Implementing the MDN-RNN/8. Building the MDN - Getting the MDN parameters.srt 15KB
  134. 9. Step 8 - Implementing the MDN-RNN/6. Building the RNN - Getting the Deterministic Output of the RNN.vtt 14KB
  135. 4. Step 3 - AutoEncoder/3. What are AutoEncoders.vtt 14KB
  136. 2. Step 1 - Artificial Neural Network/7. Gradient Descent.srt 14KB
  137. 8. Step 7 - Mixture Density Network/3. Mixture Density Networks.srt 14KB
  138. 12. The Final Run/4. The Final Race Human Intelligence vs. Artificial Intelligence.vtt 13KB
  139. 6. Step 5 - Implementing the CNN-VAE/5. Building the V part of the VAE.srt 13KB
  140. 11. Step 10 - Deep NeuroEvolution/2. Deep NeuroEvolution.vtt 13KB
  141. 1. Introduction/4. Your Three Best Resources.srt 13KB
  142. 6. Step 5 - Implementing the CNN-VAE/6. Building the Decoder part of the VAE.srt 13KB
  143. 11. Step 10 - Deep NeuroEvolution/3. Evolution Strategies.srt 13KB
  144. 9. Step 8 - Implementing the MDN-RNN/3. Building the RNN - Gathering the parameters.srt 13KB
  145. 9. Step 8 - Implementing the MDN-RNN/8. Building the MDN - Getting the MDN parameters.vtt 13KB
  146. 8. Step 7 - Mixture Density Network/2. Introduction to the MDN-RNN.srt 13KB
  147. 2. Step 1 - Artificial Neural Network/7. Gradient Descent.vtt 12KB
  148. 2. Step 1 - Artificial Neural Network/8. Stochastic Gradient Descent.srt 12KB
  149. 8. Step 7 - Mixture Density Network/3. Mixture Density Networks.vtt 12KB
  150. 1. Introduction/4. Your Three Best Resources.vtt 12KB
  151. 2. Step 1 - Artificial Neural Network/4. The Activation Function.srt 12KB
  152. 6. Step 5 - Implementing the CNN-VAE/5. Building the V part of the VAE.vtt 12KB
  153. 6. Step 5 - Implementing the CNN-VAE/6. Building the Decoder part of the VAE.vtt 11KB
  154. 11. Step 10 - Deep NeuroEvolution/3. Evolution Strategies.vtt 11KB
  155. 9. Step 8 - Implementing the MDN-RNN/3. Building the RNN - Gathering the parameters.vtt 11KB
  156. 8. Step 7 - Mixture Density Network/2. Introduction to the MDN-RNN.vtt 11KB
  157. 5. Step 4 - Variational AutoEncoder/2. Introduction to the VAE.srt 11KB
  158. 9. Step 8 - Implementing the MDN-RNN/11. Full Code Section.html 11KB
  159. 2. Step 1 - Artificial Neural Network/8. Stochastic Gradient Descent.vtt 11KB
  160. 6. Step 5 - Implementing the CNN-VAE/2. Introduction to Step 5.srt 11KB
  161. 2. Step 1 - Artificial Neural Network/4. The Activation Function.vtt 10KB
  162. 11. Step 10 - Deep NeuroEvolution/7. OpenAI Evolution Strategy.srt 10KB
  163. 5. Step 4 - Variational AutoEncoder/2. Introduction to the VAE.vtt 10KB
  164. 4. Step 3 - AutoEncoder/5. Training an AutoEncoder.srt 10KB
  165. 6. Step 5 - Implementing the CNN-VAE/2. Introduction to Step 5.vtt 9KB
  166. 3. Step 2 - Convolutional Neural Network/5. Step 1 Bis - The ReLU Layer.srt 9KB
  167. 11. Step 10 - Deep NeuroEvolution/7. OpenAI Evolution Strategy.vtt 9KB
  168. 4. Step 3 - AutoEncoder/7. Sparse AutoEncoders.srt 9KB
  169. 4. Step 3 - AutoEncoder/5. Training an AutoEncoder.vtt 8KB
  170. 3. Step 2 - Convolutional Neural Network/5. Step 1 Bis - The ReLU Layer.vtt 8KB
  171. 4. Step 3 - AutoEncoder/7. Sparse AutoEncoders.vtt 8KB
  172. 6. Step 5 - Implementing the CNN-VAE/9. The Keras Implementation.html 8KB
  173. 8. Step 7 - Mixture Density Network/4. VAE + MDN-RNN Visualization.srt 8KB
  174. 2. Step 1 - Artificial Neural Network/9. Backpropagation.srt 7KB
  175. 8. Step 7 - Mixture Density Network/4. VAE + MDN-RNN Visualization.vtt 7KB
  176. 5. Step 4 - Variational AutoEncoder/4. Reparameterization Trick.srt 7KB
  177. 2. Step 1 - Artificial Neural Network/9. Backpropagation.vtt 6KB
  178. 5. Step 4 - Variational AutoEncoder/3. Variational AutoEncoders.srt 6KB
  179. 3. Step 2 - Convolutional Neural Network/9. Summary.srt 6KB
  180. 5. Step 4 - Variational AutoEncoder/4. Reparameterization Trick.vtt 6KB
  181. 4. Step 3 - AutoEncoder/6. Overcomplete Hidden Layers.srt 6KB
  182. 5. Step 4 - Variational AutoEncoder/3. Variational AutoEncoders.vtt 5KB
  183. 3. Step 2 - Convolutional Neural Network/9. Summary.vtt 5KB
  184. 3. Step 2 - Convolutional Neural Network/2. Plan of Attack.srt 5KB
  185. 9. Step 8 - Implementing the MDN-RNN/12. The Keras Implementation.html 5KB
  186. 4. Step 3 - AutoEncoder/6. Overcomplete Hidden Layers.vtt 5KB
  187. 7. Step 6 - Recurrent Neural Network/7. LSTM Variations.srt 5KB
  188. 3. Step 2 - Convolutional Neural Network/2. Plan of Attack.vtt 5KB
  189. 7. Step 6 - Recurrent Neural Network/7. LSTM Variations.vtt 4KB
  190. 6. Step 5 - Implementing the CNN-VAE/8. Full Code Section.html 4KB
  191. 2. Step 1 - Artificial Neural Network/2. Plan of Attack.srt 4KB
  192. 4. Step 3 - AutoEncoder/8. Denoising AutoEncoders.srt 4KB
  193. 4. Step 3 - AutoEncoder/9. Contractive AutoEncoders.srt 4KB
  194. 2. Step 1 - Artificial Neural Network/2. Plan of Attack.vtt 4KB
  195. 1. Introduction/1. Updates on Udemy Reviews.srt 3KB
  196. 7. Step 6 - Recurrent Neural Network/2. Plan of Attack.srt 3KB
  197. 4. Step 3 - AutoEncoder/8. Denoising AutoEncoders.vtt 3KB
  198. 4. Step 3 - AutoEncoder/2. Plan of Attack.srt 3KB
  199. 4. Step 3 - AutoEncoder/9. Contractive AutoEncoders.vtt 3KB
  200. 7. Step 6 - Recurrent Neural Network/2. Plan of Attack.vtt 3KB
  201. 1. Introduction/1. Updates on Udemy Reviews.vtt 3KB
  202. 4. Step 3 - AutoEncoder/2. Plan of Attack.vtt 3KB
  203. 9. Step 8 - Implementing the MDN-RNN/1. Welcome to Step 8 - Implementing the MDN-RNN.html 3KB
  204. 4. Step 3 - AutoEncoder/11. Deep AutoEncoders.srt 3KB
  205. 3. Step 2 - Convolutional Neural Network/7. Step 3 - Flattening.srt 3KB
  206. 4. Step 3 - AutoEncoder/10. Stacked AutoEncoders.srt 2KB
  207. 4. Step 3 - AutoEncoder/11. Deep AutoEncoders.vtt 2KB
  208. 1. Introduction/3. BONUS Learning Paths.html 2KB
  209. 12. The Final Run/5. THANK YOU bonus video.srt 2KB
  210. 6. Step 5 - Implementing the CNN-VAE/1. Welcome to Step 5 - Implementing the CNN-VAE.html 2KB
  211. 3. Step 2 - Convolutional Neural Network/7. Step 3 - Flattening.vtt 2KB
  212. 4. Step 3 - AutoEncoder/10. Stacked AutoEncoders.vtt 2KB
  213. 4. Step 3 - AutoEncoder/4. A Note on Biases.srt 2KB
  214. 12. The Final Run/5. THANK YOU bonus video.vtt 2KB
  215. 4. Step 3 - AutoEncoder/4. A Note on Biases.vtt 2KB
  216. 11. Step 10 - Deep NeuroEvolution/1. Welcome to Step 10 - Deep NeuroEvolution.html 1KB
  217. 13. Bonus Lectures/1. YOUR SPECIAL BONUS.html 1KB
  218. 12. The Final Run/2. Download the whole AI Masterclass folder here.html 1KB
  219. 1. Introduction/5. Download the Resources here.html 790B
  220. 1. Introduction/6. Meet your instructors!.html 723B
  221. 2. Step 1 - Artificial Neural Network/1. Welcome to Step 1 - Artificial Neural Network.html 605B
  222. 8. Step 7 - Mixture Density Network/1. Welcome to Step 7 - Mixture Density Network.html 517B
  223. 7. Step 6 - Recurrent Neural Network/1. Welcome to Step 6 - Recurrent Neural Network.html 507B
  224. 3. Step 2 - Convolutional Neural Network/1. Welcome to Step 2 - Convolutional Neural Network.html 430B
  225. 10. Step 9 - Reinforcement Learning/1. Welcome to Step 9 - Reinforcement Learning.html 424B
  226. 5. Step 4 - Variational AutoEncoder/1. Welcome to Step 4 - Variational AutoEncoder.html 423B
  227. 4. Step 3 - AutoEncoder/1. Welcome to Step 3 - AutoEncoder.html 418B
  228. 10. Step 9 - Reinforcement Learning/4. Full Code Section.html 393B
  229. udemycoursedownloader.com.url 132B
  230. Udemy Course downloader.txt 94B