GetFreeCourses.Me-Udemy-Complete Machine Learning and Data Science Zero to Mastery 收录时间:2020-02-15 09:45:19 文件大小:13GB 下载次数:94 最近下载:2021-01-22 19:56:34 磁力链接: magnet:?xt=urn:btih:efb3aa528657ed39712bf4d25f94593b1eb872dc 立即下载 复制链接 文件列表 5. Data Science Environment Setup/8. Windows Environment Setup 2.mp4 228MB 9. Scikit-learn Creating Machine Learning Models/7. Typical scikit-learn Workflow.mp4 190MB 9. Scikit-learn Creating Machine Learning Models/8. Optional Debugging Warnings In Jupyter.mp4 176MB 17. Career Advice + Extra Bits/9. CWD Git + Github.mp4 176MB 9. Scikit-learn Creating Machine Learning Models/38. Tuning Hyperparameters.mp4 176MB 17. Career Advice + Extra Bits/3. What If I Don_t Have Enough Experience.mp4 161MB 12. Milestone Project 2 Supervised Learning (Time Series Data)/7. Feature Engineering.mp4 159MB 9. Scikit-learn Creating Machine Learning Models/44. Putting It All Together.mp4 158MB 12. Milestone Project 2 Supervised Learning (Time Series Data)/8. Turning Data Into Numbers.mp4 146MB 5. Data Science Environment Setup/5. Mac Environment Setup.mp4 144MB 9. Scikit-learn Creating Machine Learning Models/14. Choosing The Right Model For Your Data.mp4 143MB 12. Milestone Project 2 Supervised Learning (Time Series Data)/19. Feature Importance.mp4 142MB 12. Milestone Project 2 Supervised Learning (Time Series Data)/17. Preproccessing Our Data.mp4 139MB 11. Milestone Project 1 Supervised Learning (Binary Classification)/9. Finding Patterns 3.mp4 138MB 12. Milestone Project 2 Supervised Learning (Time Series Data)/5. Exploring Our Data.mp4 138MB 9. Scikit-learn Creating Machine Learning Models/13. Getting Your Data Ready Handling Missing Values With Scikit-learn.mp4 137MB 9. Scikit-learn Creating Machine Learning Models/11. Getting Your Data Ready Convert Data To Numbers.mp4 135MB 17. Career Advice + Extra Bits/11. Contributing To Open Source.mp4 130MB 11. Milestone Project 1 Supervised Learning (Binary Classification)/20. Finding The Most Important Features.mp4 127MB 5. Data Science Environment Setup/6. Mac Environment Setup 2.mp4 125MB 8. Matplotlib + Seaborn Plotting and Data Visualization/18. Customizing Your Plots 2.mp4 124MB 9. Scikit-learn Creating Machine Learning Models/40. Tuning Hyperparameters 3.mp4 122MB 8. Matplotlib + Seaborn Plotting and Data Visualization/16. Plotting from Pandas DataFrames 7.mp4 120MB 9. Scikit-learn Creating Machine Learning Models/18. Choosing The Right Model For Your Data 3 (Classification).mp4 119MB 17. Career Advice + Extra Bits/10. CWD Git + Github 2.mp4 118MB 9. Scikit-learn Creating Machine Learning Models/45. Putting It All Together 2.mp4 117MB 9. Scikit-learn Creating Machine Learning Models/39. Tuning Hyperparameters 2.mp4 117MB 17. Career Advice + Extra Bits/12. Contributing To Open Source 2.mp4 113MB 11. Milestone Project 1 Supervised Learning (Binary Classification)/14. Tuning Hyperparameters.mp4 108MB 12. Milestone Project 2 Supervised Learning (Time Series Data)/9. Filling Missing Numerical Values.mp4 106MB 11. Milestone Project 1 Supervised Learning (Binary Classification)/4. Step 1~4 Framework Setup.mp4 106MB 6. Pandas Data Analysis/9. Manipulating Data.mp4 105MB 9. Scikit-learn Creating Machine Learning Models/12. Getting Your Data Ready Handling Missing Values With Pandas.mp4 105MB 18. Learn Python/1. What Is A Programming Language.mp4 105MB 11. Milestone Project 1 Supervised Learning (Binary Classification)/15. Tuning Hyperparameters 2.mp4 104MB 5. Data Science Environment Setup/11. Jupyter Notebook Walkthrough 2.mp4 104MB 12. Milestone Project 2 Supervised Learning (Time Series Data)/13. Custom Evaluation Function.mp4 103MB 11. Milestone Project 1 Supervised Learning (Binary Classification)/13. TuningImproving Our Model.mp4 103MB 12. Milestone Project 2 Supervised Learning (Time Series Data)/3. Project Environment Setup.mp4 101MB 11. Milestone Project 1 Supervised Learning (Binary Classification)/3. Project Environment Setup.mp4 101MB 11. Milestone Project 1 Supervised Learning (Binary Classification)/8. Finding Patterns 2.mp4 100MB 8. Matplotlib + Seaborn Plotting and Data Visualization/11. Plotting From Pandas DataFrames 2.mp4 99MB 11. Milestone Project 1 Supervised Learning (Binary Classification)/11. Choosing The Right Models.mp4 96MB 9. Scikit-learn Creating Machine Learning Models/24. Evaluating A Machine Learning Model 2 (Cross Validation).mp4 96MB 9. Scikit-learn Creating Machine Learning Models/36. Evaluating A Model With Scikit-learn Functions.mp4 95MB 18. Learn Python/16. Variables.mp4 94MB 12. Milestone Project 2 Supervised Learning (Time Series Data)/14. Reducing Data.mp4 93MB 18. Learn Python/2. Python Interpreter.mp4 93MB 8. Matplotlib + Seaborn Plotting and Data Visualization/17. Customizing Your Plots.mp4 92MB 9. Scikit-learn Creating Machine Learning Models/35. Evaluating A Model With Cross Validation and Scoring Parameter.mp4 91MB 7. NumPy/13. Exercise Nut Butter Store Sales.mp4 91MB 6. Pandas Data Analysis/11. Manipulating Data 3.mp4 91MB 9. Scikit-learn Creating Machine Learning Models/37. Improving A Machine Learning Model.mp4 91MB 9. Scikit-learn Creating Machine Learning Models/4. Refresher What Is Machine Learning.mp4 88MB 9. Scikit-learn Creating Machine Learning Models/30. Evaluating A Classification Model 6 (Classification Report).mp4 87MB 9. Scikit-learn Creating Machine Learning Models/23. Evaluating A Machine Learning Model (Score).mp4 87MB 9. Scikit-learn Creating Machine Learning Models/15. Choosing The Right Model For Your Data 2 (Regression).mp4 87MB 6. Pandas Data Analysis/10. Manipulating Data 2.mp4 87MB 8. Matplotlib + Seaborn Plotting and Data Visualization/3. Importing And Using Matplotlib.mp4 86MB 11. Milestone Project 1 Supervised Learning (Binary Classification)/21. Reviewing The Project.mp4 86MB 7. NumPy/16. Turn Images Into NumPy Arrays.mp4 86MB 12. Milestone Project 2 Supervised Learning (Time Series Data)/15. RandomizedSearchCV.mp4 86MB 12. Milestone Project 2 Supervised Learning (Time Series Data)/4. Step 1~4 Framework Setup.mp4 86MB 7. NumPy/12. Dot Product vs Element Wise.mp4 84MB 12. Milestone Project 2 Supervised Learning (Time Series Data)/12. Splitting Data.mp4 83MB 8. Matplotlib + Seaborn Plotting and Data Visualization/4. Anatomy Of A Matplotlib Figure.mp4 82MB 18. Learn Python/5. Python 2 vs Python 3.mp4 82MB 8. Matplotlib + Seaborn Plotting and Data Visualization/15. Plotting from Pandas DataFrames 6.mp4 82MB 7. NumPy/8. Manipulating Arrays.mp4 81MB 13. Data Engineering/9. Optional OLTP Databases.mp4 80MB 11. Milestone Project 1 Supervised Learning (Binary Classification)/5. Getting Our Tools Ready.mp4 79MB 12. Milestone Project 2 Supervised Learning (Time Series Data)/16. Improving Hyperparameters.mp4 79MB 12. Milestone Project 2 Supervised Learning (Time Series Data)/18. Making Predictions.mp4 79MB 7. NumPy/4. NumPy DataTypes and Attributes.mp4 79MB 9. Scikit-learn Creating Machine Learning Models/28. Evaluating A Classification Model 4 (Confusion Matrix).mp4 78MB 9. Scikit-learn Creating Machine Learning Models/6. Scikit-learn Cheatsheet.mp4 75MB 8. Matplotlib + Seaborn Plotting and Data Visualization/12. Plotting from Pandas DataFrames 3.mp4 75MB 18. Learn Python/10. Numbers.mp4 73MB 11. Milestone Project 1 Supervised Learning (Binary Classification)/10. Preparing Our Data For Machine Learning.mp4 73MB 11. Milestone Project 1 Supervised Learning (Binary Classification)/17. Evaluating Our Model.mp4 72MB 7. NumPy/7. Viewing Arrays and Matrices.mp4 71MB 9. Scikit-learn Creating Machine Learning Models/31. Evaluating A Regression Model 1 (R2 Score).mp4 70MB 8. Matplotlib + Seaborn Plotting and Data Visualization/6. Histograms And Subplots.mp4 70MB 18. Learn Python/26. Built-In Functions + Methods.mp4 69MB 7. NumPy/9. Manipulating Arrays 2.mp4 68MB 5. Data Science Environment Setup/10. Jupyter Notebook Walkthrough.mp4 67MB 8. Matplotlib + Seaborn Plotting and Data Visualization/5. Scatter Plot And Bar Plot.mp4 67MB 12. Milestone Project 2 Supervised Learning (Time Series Data)/10. Filling Missing Categorical Values.mp4 67MB 11. Milestone Project 1 Supervised Learning (Binary Classification)/6. Exploring Our Data.mp4 67MB 6. Pandas Data Analysis/13. How To Download The Course Assignments.mp4 67MB 7. NumPy/5. Creating NumPy Arrays.mp4 67MB 9. Scikit-learn Creating Machine Learning Models/20. Making Predictions With Our Model.mp4 67MB 9. Scikit-learn Creating Machine Learning Models/26. Evaluating A Classification Model 2 (ROC Curve).mp4 66MB 11. Milestone Project 1 Supervised Learning (Binary Classification)/19. Evaluating Our Model 3.mp4 65MB 18. Learn Python/48. Sets 2.mp4 64MB 18. Learn Python/3. How To Run Python Code.mp4 64MB 9. Scikit-learn Creating Machine Learning Models/9. Getting Your Data Ready Splitting Your Data.mp4 64MB 9. Scikit-learn Creating Machine Learning Models/29. Evaluating A Classification Model 5 (Confusion Matrix).mp4 64MB 11. Milestone Project 1 Supervised Learning (Binary Classification)/7. Finding Patterns.mp4 63MB 11. Milestone Project 1 Supervised Learning (Binary Classification)/16. Tuning Hyperparameters 3.mp4 63MB 18. Learn Python/34. List Methods.mp4 62MB 3. Machine Learning and Data Science Framework/4. Types of Machine Learning Problems.mp4 60MB 8. Matplotlib + Seaborn Plotting and Data Visualization/9. Plotting From Pandas DataFrames.mp4 60MB 18. Learn Python/12. DEVELOPER FUNDAMENTALS I.mp4 60MB 8. Matplotlib + Seaborn Plotting and Data Visualization/14. Plotting from Pandas DataFrames 5.mp4 57MB 9. Scikit-learn Creating Machine Learning Models/43. Saving And Loading A Model 2.mp4 57MB 9. Scikit-learn Creating Machine Learning Models/19. Fitting A Model To The Data.mp4 57MB 12. Milestone Project 2 Supervised Learning (Time Series Data)/11. Fitting A Machine Learning Model.mp4 56MB 11. Milestone Project 1 Supervised Learning (Binary Classification)/12. Experimenting With Machine Learning Models.mp4 55MB 9. Scikit-learn Creating Machine Learning Models/33. Evaluating A Regression Model 3 (MSE).mp4 55MB 9. Scikit-learn Creating Machine Learning Models/21. predict() vs predict_proba().mp4 54MB 7. NumPy/11. Reshape and Transpose.mp4 54MB 9. Scikit-learn Creating Machine Learning Models/42. Saving And Loading A Model.mp4 53MB 12. Milestone Project 2 Supervised Learning (Time Series Data)/6. Exploring Our Data 2.mp4 52MB 7. NumPy/6. NumPy Random Seed.mp4 52MB 7. NumPy/10. Standard Deviation and Variance.mp4 51MB 18. Learn Python/30. Exercise Password Checker.mp4 51MB 9. Scikit-learn Creating Machine Learning Models/27. Evaluating A Classification Model 3 (ROC Curve).mp4 51MB 18. Learn Python/28. Exercise Type Conversion.mp4 50MB 18. Learn Python/32. List Slicing.mp4 50MB 8. Matplotlib + Seaborn Plotting and Data Visualization/19. Saving And Sharing Your Plots.mp4 50MB 18. Learn Python/23. Formatted Strings.mp4 49MB 18. Learn Python/24. String Indexes.mp4 49MB 8. Matplotlib + Seaborn Plotting and Data Visualization/13. Plotting from Pandas DataFrames 4.mp4 49MB 5. Data Science Environment Setup/7. Windows Environment Setup.mp4 48MB 18. Learn Python/4. Our First Python Program.mp4 47MB 9. Scikit-learn Creating Machine Learning Models/22. Making Predictions With Our Model (Regression).mp4 45MB 3. Machine Learning and Data Science Framework/11. Modelling - Comparison.mp4 45MB 2. Machine Learning 101/3. Exercise Machine Learning Playground.mp4 43MB 18. Learn Python/44. Dictionary Methods 2.mp4 42MB 13. Data Engineering/2. What Is Data.mp4 42MB 18. Learn Python/11. Math Functions.mp4 42MB 11. Milestone Project 1 Supervised Learning (Binary Classification)/18. Evaluating Our Model 2.mp4 42MB 1. Introduction/1. Course Outline.mp4 41MB 9. Scikit-learn Creating Machine Learning Models/2. Scikit-learn Introduction.mp4 41MB 18. Learn Python/37. Common List Patterns.mp4 40MB 18. Learn Python/7. Learning Python.mp4 39MB 8. Matplotlib + Seaborn Plotting and Data Visualization/7. Subplots Option 2.mp4 38MB 5. Data Science Environment Setup/12. Jupyter Notebook Walkthrough 3.mp4 38MB 18. Learn Python/47. Sets.mp4 37MB 3. Machine Learning and Data Science Framework/7. Features In Data.mp4 37MB 11. Milestone Project 1 Supervised Learning (Binary Classification)/2. Project Overview.mp4 34MB 12. Milestone Project 2 Supervised Learning (Time Series Data)/2. Project Overview.mp4 33MB 7. NumPy/15. Sorting Arrays.mp4 33MB 18. Learn Python/40. Dictionaries.mp4 33MB 13. Data Engineering/7. Types Of Databases.mp4 33MB 8. Matplotlib + Seaborn Plotting and Data Visualization/2. Matplotlib Introduction.mp4 32MB 9. Scikit-learn Creating Machine Learning Models/25. Evaluating A Classification Model 1 (Accuracy).mp4 31MB 18. Learn Python/19. Strings.mp4 31MB 5. Data Science Environment Setup/4. Conda Environments.mp4 31MB 2. Machine Learning 101/4. How Did We Get Here.mp4 31MB 3. Machine Learning and Data Science Framework/5. Types of Data.mp4 29MB 18. Learn Python/29. DEVELOPER FUNDAMENTALS II.mp4 29MB 18. Learn Python/8. Python Data Types.mp4 29MB 18. Learn Python/36. List Methods 3.mp4 28MB 3. Machine Learning and Data Science Framework/8. Modelling - Splitting Data.mp4 28MB 6. Pandas Data Analysis/3. Pandas Introduction.mp4 27MB 18. Learn Python/35. List Methods 2.mp4 27MB 3. Machine Learning and Data Science Framework/13. Tools We Will Use.mp4 27MB 18. Learn Python/43. Dictionary Methods.mp4 27MB 7. NumPy/2. NumPy Introduction.mp4 27MB 18. Learn Python/41. DEVELOPER FUNDAMENTALS III.mp4 27MB 7. NumPy/14. Comparison Operators.mp4 26MB 18. Learn Python/6. Exercise How Does Python Work.mp4 26MB 18. Learn Python/45. Tuples.mp4 26MB 2. Machine Learning 101/8. What Is Machine Learning Round 2.mp4 26MB 13. Data Engineering/5. What Is A Data Engineer 3.mp4 24MB 13. Data Engineering/4. What Is A Data Engineer 2.mp4 24MB 3. Machine Learning and Data Science Framework/3. 6 Step Machine Learning Framework.mp4 23MB 3. Machine Learning and Data Science Framework/9. Modelling - Picking the Model.mp4 23MB 18. Learn Python/22. Escape Sequences.mp4 23MB 2. Machine Learning 101/6. Types of Machine Learning.mp4 23MB 19. Learn Python Part 2/43. Exercise Comprehensions.mp4 22MB 18. Learn Python/31. Lists.mp4 22MB 18. Learn Python/15. Optional bin() and complex.mp4 22MB 19. Learn Python Part 2/30. Exercise Functions.mp4 22MB 3. Machine Learning and Data Science Framework/12. Experimentation.mp4 21MB 18. Learn Python/25. Immutability.mp4 21MB 18. Learn Python/42. Dictionary Keys.mp4 20MB 2. Machine Learning 101/2. AIMachine LearningData Science.mp4 20MB 2. Machine Learning 101/5. Exercise YouTube Recommendation Engine.mp4 19MB 5. Data Science Environment Setup/2. Introducing Our Tools.mp4 19MB 13. Data Engineering/13. Kafka and Stream Processing.mp4 19MB 18. Learn Python/33. Matrix.mp4 19MB 18. Learn Python/21. Type Conversion.mp4 19MB 3. Machine Learning and Data Science Framework/6. Types of Evaluation.mp4 18MB 18. Learn Python/46. Tuples 2.mp4 17MB 2. Machine Learning 101/1. What Is Machine Learning.mp4 17MB 18. Learn Python/27. Booleans.mp4 17MB 9. Scikit-learn Creating Machine Learning Models/10. Quick Tip Clean, Transform, Reduce.mp4 17MB 3. Machine Learning and Data Science Framework/10. Modelling - Tuning.mp4 16MB 17. Career Advice + Extra Bits/7. JTS Start With Why.mp4 15MB 18. Learn Python/18. Augmented Assignment Operator.mp4 15MB 13. Data Engineering/3. What Is A Data Engineer.mp4 15MB 13. Data Engineering/6. What Is A Data Engineer 4.mp4 15MB 18. Learn Python/13. Operator Precedence.mp4 14MB 18. Learn Python/38. List Unpacking.mp4 14MB 13. Data Engineering/1. Data Engineering Introduction.mp4 13MB 3. Machine Learning and Data Science Framework/1. Section Overview.mp4 13MB 7. NumPy/1. Section Overview.mp4 13MB 5. Data Science Environment Setup/3. What is Conda.mp4 12MB 9. Scikit-learn Creating Machine Learning Models/1. Section Overview.mp4 12MB 8. Matplotlib + Seaborn Plotting and Data Visualization/8. Quick Tip Data Visualizations.mp4 12MB 3. Machine Learning and Data Science Framework/2. Introducing Our Framework.mp4 11MB 17. Career Advice + Extra Bits/6. JTS Learn to Learn.mp4 11MB 21. Where To Go From Here/2. Thank You.mp4 11MB 18. Learn Python/17. Expressions vs Statements.mp4 11MB 6. Pandas Data Analysis/1. Section Overview.mp4 11MB 11. Milestone Project 1 Supervised Learning (Binary Classification)/1. Section Overview.mp4 10MB 13. Data Engineering/11. Hadoop, HDFS and MapReduce.mp4 10MB 4. The 2 Paths/1. The 2 Paths.mp4 10MB 12. Milestone Project 2 Supervised Learning (Time Series Data)/1. Section Overview.mp4 9MB 8. Matplotlib + Seaborn Plotting and Data Visualization/1. Section Overview.mp4 9MB 1. Introduction/4. Your First Day.mp4 8MB 18. Learn Python/39. None.mp4 8MB 18. Learn Python/20. String Concatenation.mp4 7MB 7. NumPy/16.2 numpy-images.zip.zip 7MB 13. Data Engineering/12. Apache Spark and Apache Flink.mp4 6MB 2. Machine Learning 101/9. Section Review.mp4 3MB 5. Data Science Environment Setup/1. Section Overview.mp4 2MB 8. Matplotlib + Seaborn Plotting and Data Visualization/4.2 matplotlib-anatomy-of-a-plot-with-code.png.png 655KB 8. Matplotlib + Seaborn Plotting and Data Visualization/4.1 matplotlib-anatomy-of-a-plot.png.png 369KB 6. Pandas Data Analysis/10.1 pandas-anatomy-of-a-dataframe.png.png 333KB 6. Pandas Data Analysis/4.1 pandas-anatomy-of-a-dataframe.png.png 333KB 11. Milestone Project 1 Supervised Learning (Binary Classification)/3. Project Environment Setup.mp4.jpg 215KB 5. Data Science Environment Setup/3.4 conda-cheatsheet.pdf.pdf 201KB 9. Scikit-learn Creating Machine Learning Models/7. Typical scikit-learn Workflow.srt 32KB 5. Data Science Environment Setup/8. Windows Environment Setup 2.srt 32KB 9. Scikit-learn Creating Machine Learning Models/38. Tuning Hyperparameters.srt 31KB 6. Pandas Data Analysis/9.1 car-sales-extended-missing-data.csv.csv 30KB 9. Scikit-learn Creating Machine Learning Models/44. Putting It All Together.srt 26KB 9. Scikit-learn Creating Machine Learning Models/8. Optional Debugging Warnings In Jupyter.srt 26KB 5. Data Science Environment Setup/5. Mac Environment Setup.srt 24KB 9. Scikit-learn Creating Machine Learning Models/13. Getting Your Data Ready Handling Missing Values With Scikit-learn.srt 23KB 9. Scikit-learn Creating Machine Learning Models/11. Getting Your Data Ready Convert Data To Numbers.srt 23KB 5. Data Science Environment Setup/11. Jupyter Notebook Walkthrough 2.srt 22KB 11. Milestone Project 1 Supervised Learning (Binary Classification)/20. Finding The Most Important Features.srt 22KB 11. Milestone Project 1 Supervised Learning (Binary Classification)/8. Finding Patterns 2.srt 22KB 12. Milestone Project 2 Supervised Learning (Time Series Data)/8. Turning Data Into Numbers.srt 22KB 12. Milestone Project 2 Supervised Learning (Time Series Data)/7. Feature Engineering.srt 22KB 9. Scikit-learn Creating Machine Learning Models/14. Choosing The Right Model For Your Data.srt 21KB 17. Career Advice + Extra Bits/9. CWD Git + Github.srt 21KB 5. Data Science Environment Setup/6. Mac Environment Setup 2.srt 21KB 17. Career Advice + Extra Bits/3. What If I Don_t Have Enough Experience.srt 20KB 12. Milestone Project 2 Supervised Learning (Time Series Data)/5. Exploring Our Data.srt 20KB 7. NumPy/4. NumPy DataTypes and Attributes.srt 19KB 11. Milestone Project 1 Supervised Learning (Binary Classification)/9. Finding Patterns 3.srt 19KB 9. Scikit-learn Creating Machine Learning Models/40. Tuning Hyperparameters 3.srt 19KB 17. Career Advice + Extra Bits/10. CWD Git + Github 2.srt 18KB 6. Pandas Data Analysis/9. Manipulating Data.srt 18KB 9. Scikit-learn Creating Machine Learning Models/35. Evaluating A Model With Cross Validation and Scoring Parameter.srt 18KB 6. Pandas Data Analysis/8. Selecting and Viewing Data with Pandas Part 2.srt 18KB 12. Milestone Project 2 Supervised Learning (Time Series Data)/17. Preproccessing Our Data.srt 18KB 11. Milestone Project 1 Supervised Learning (Binary Classification)/13. TuningImproving Our Model.srt 18KB 12. Milestone Project 2 Supervised Learning (Time Series Data)/19. Feature Importance.srt 17KB 9. Scikit-learn Creating Machine Learning Models/24. Evaluating A Machine Learning Model 2 (Cross Validation).srt 17KB 17. Career Advice + Extra Bits/11. Contributing To Open Source.srt 17KB 9. Scikit-learn Creating Machine Learning Models/18. Choosing The Right Model For Your Data 3 (Classification).srt 17KB 9. Scikit-learn Creating Machine Learning Models/39. Tuning Hyperparameters 2.srt 17KB 7. NumPy/13. Exercise Nut Butter Store Sales.srt 17KB 9. Scikit-learn Creating Machine Learning Models/12. Getting Your Data Ready Handling Missing Values With Pandas.srt 17KB 12. Milestone Project 2 Supervised Learning (Time Series Data)/9. Filling Missing Numerical Values.srt 17KB 6. Pandas Data Analysis/4. Series, Data Frames and CSVs.srt 17KB 11. Milestone Project 1 Supervised Learning (Binary Classification)/4. Step 1~4 Framework Setup.srt 17KB 9. Scikit-learn Creating Machine Learning Models/36. Evaluating A Model With Scikit-learn Functions.srt 16KB 7. NumPy/8. Manipulating Arrays.srt 16KB 9. Scikit-learn Creating Machine Learning Models/45. Putting It All Together 2.srt 16KB 12. Milestone Project 2 Supervised Learning (Time Series Data)/13. Custom Evaluation Function.srt 16KB 8. Matplotlib + Seaborn Plotting and Data Visualization/3. Importing And Using Matplotlib.srt 16KB 18. Learn Python/16. Variables.srt 16KB 12. Milestone Project 2 Supervised Learning (Time Series Data)/3. Project Environment Setup.srt 16KB 11. Milestone Project 1 Supervised Learning (Binary Classification)/14. Tuning Hyperparameters.srt 16KB 19. Learn Python Part 2/2. Conditional Logic.srt 16KB 7. NumPy/12. Dot Product vs Element Wise.srt 15KB 5. Data Science Environment Setup/10. Jupyter Notebook Walkthrough.srt 15KB 11. Milestone Project 1 Supervised Learning (Binary Classification)/17. Evaluating Our Model.srt 15KB 9. Scikit-learn Creating Machine Learning Models/28. Evaluating A Classification Model 4 (Confusion Matrix).srt 15KB 11. Milestone Project 1 Supervised Learning (Binary Classification)/15. Tuning Hyperparameters 2.srt 15KB 19. Learn Python Part 2/24. return.srt 15KB 8. Matplotlib + Seaborn Plotting and Data Visualization/16. Plotting from Pandas DataFrames 7.srt 15KB 9. Scikit-learn Creating Machine Learning Models/37. Improving A Machine Learning Model.srt 15KB 8. Matplotlib + Seaborn Plotting and Data Visualization/5. Scatter Plot And Bar Plot.srt 15KB 12. Milestone Project 2 Supervised Learning (Time Series Data)/14. Reducing Data.srt 15KB 6. Pandas Data Analysis/7. Selecting and Viewing Data with Pandas.srt 15KB 9. Scikit-learn Creating Machine Learning Models/30. Evaluating A Classification Model 6 (Classification Report).srt 15KB 11. Milestone Project 1 Supervised Learning (Binary Classification)/3. Project Environment Setup.srt 14KB 8. Matplotlib + Seaborn Plotting and Data Visualization/4. Anatomy Of A Matplotlib Figure.srt 14KB 3. Machine Learning and Data Science Framework/4. Types of Machine Learning Problems.srt 14KB 8. Matplotlib + Seaborn Plotting and Data Visualization/17. Customizing Your Plots.srt 14KB 6. Pandas Data Analysis/10. Manipulating Data 2.srt 14KB 11. Milestone Project 1 Supervised Learning (Binary Classification)/21. Reviewing The Project.srt 14KB 6. Pandas Data Analysis/11. Manipulating Data 3.srt 14KB 8. Matplotlib + Seaborn Plotting and Data Visualization/11. Plotting From Pandas DataFrames 2.srt 14KB 6. Pandas Data Analysis/6. Describing Data with Pandas.srt 14KB 12. Milestone Project 2 Supervised Learning (Time Series Data)/12. Splitting Data.srt 14KB 11. Milestone Project 1 Supervised Learning (Binary Classification)/7. Finding Patterns.srt 13KB 8. Matplotlib + Seaborn Plotting and Data Visualization/18. Customizing Your Plots 2.srt 13KB 3. Machine Learning and Data Science Framework/11. Modelling - Comparison.srt 13KB 11. Milestone Project 1 Supervised Learning (Binary Classification)/11. Choosing The Right Models.srt 13KB 7. NumPy/7. Viewing Arrays and Matrices.srt 13KB 9. Scikit-learn Creating Machine Learning Models/23. Evaluating A Machine Learning Model (Score).srt 13KB 11. Milestone Project 1 Supervised Learning (Binary Classification)/5. Getting Our Tools Ready.srt 13KB 19. Learn Python Part 2/45. Modules in Python.srt 13KB 12. Milestone Project 2 Supervised Learning (Time Series Data)/15. RandomizedSearchCV.srt 13KB 19. Learn Python Part 2/48. Packages in Python.srt 12KB 8. Matplotlib + Seaborn Plotting and Data Visualization/6. Histograms And Subplots.srt 12KB 7. NumPy/5. Creating NumPy Arrays.srt 12KB 12. Milestone Project 2 Supervised Learning (Time Series Data)/4. Step 1~4 Framework Setup.srt 12KB 9. Scikit-learn Creating Machine Learning Models/26. Evaluating A Classification Model 2 (ROC Curve).srt 12KB 13. Data Engineering/9. Optional OLTP Databases.srt 12KB 9. Scikit-learn Creating Machine Learning Models/20. Making Predictions With Our Model.srt 12KB 9. Scikit-learn Creating Machine Learning Models/9. Getting Your Data Ready Splitting Your Data.srt 12KB 11. Milestone Project 1 Supervised Learning (Binary Classification)/10. Preparing Our Data For Machine Learning.srt 12KB 9. Scikit-learn Creating Machine Learning Models/31. Evaluating A Regression Model 1 (R2 Score).srt 12KB 9. Scikit-learn Creating Machine Learning Models/15. Choosing The Right Model For Your Data 2 (Regression).srt 12KB 8. Matplotlib + Seaborn Plotting and Data Visualization/14. Plotting from Pandas DataFrames 5.srt 12KB 9. Scikit-learn Creating Machine Learning Models/21. predict() vs predict_proba().srt 12KB 11. Milestone Project 1 Supervised Learning (Binary Classification)/19. Evaluating Our Model 3.srt 12KB 7. NumPy/9. Manipulating Arrays 2.srt 11KB 5. Data Science Environment Setup/12. Jupyter Notebook Walkthrough 3.srt 11KB 8. Matplotlib + Seaborn Plotting and Data Visualization/12. Plotting from Pandas DataFrames 3.srt 11KB 11. Milestone Project 1 Supervised Learning (Binary Classification)/6. Exploring Our Data.srt 11KB 12. Milestone Project 2 Supervised Learning (Time Series Data)/18. Making Predictions.srt 11KB 12. Milestone Project 2 Supervised Learning (Time Series Data)/10. Filling Missing Categorical Values.srt 11KB 9. Scikit-learn Creating Machine Learning Models/29. Evaluating A Classification Model 5 (Confusion Matrix).srt 11KB 18. Learn Python/10. Numbers.srt 11KB 8. Matplotlib + Seaborn Plotting and Data Visualization/15. Plotting from Pandas DataFrames 6.srt 11KB 11. Milestone Project 1 Supervised Learning (Binary Classification)/6.1 heart-disease.csv.csv 11KB 5. Data Science Environment Setup/10.1 heart-disease.csv.csv 11KB 8. Matplotlib + Seaborn Plotting and Data Visualization/13.1 heart-disease.csv.csv 11KB 6. Pandas Data Analysis/13. How To Download The Course Assignments.srt 11KB 12. Milestone Project 2 Supervised Learning (Time Series Data)/16. Improving Hyperparameters.srt 11KB 18. Learn Python/34. List Methods.srt 11KB 9. Scikit-learn Creating Machine Learning Models/2. Scikit-learn Introduction.srt 11KB 19. Learn Python Part 2/47. Optional PyCharm.srt 11KB 12. Milestone Project 2 Supervised Learning (Time Series Data)/11. Fitting A Machine Learning Model.srt 10KB 7. NumPy/16. Turn Images Into NumPy Arrays.srt 10KB 19. Learn Python Part 2/18. Our First GUI.srt 10KB 18. Learn Python/26. Built-In Functions + Methods.srt 10KB 17. Career Advice + Extra Bits/12. Contributing To Open Source 2.srt 10KB 9. Scikit-learn Creating Machine Learning Models/6. Scikit-learn Cheatsheet.srt 10KB 19. Learn Python Part 2/36. Pure Functions.srt 10KB 9. Scikit-learn Creating Machine Learning Models/27. Evaluating A Classification Model 3 (ROC Curve).srt 10KB 11. Milestone Project 1 Supervised Learning (Binary Classification)/2. Project Overview.srt 10KB 11. Milestone Project 1 Supervised Learning (Binary Classification)/16. Tuning Hyperparameters 3.srt 10KB 9. Scikit-learn Creating Machine Learning Models/42. Saving And Loading A Model.srt 10KB 7. NumPy/6. NumPy Random Seed.srt 10KB 11. Milestone Project 1 Supervised Learning (Binary Classification)/12. Experimenting With Machine Learning Models.srt 10KB 7. NumPy/11. Reshape and Transpose.srt 10KB 8. Matplotlib + Seaborn Plotting and Data Visualization/13. Plotting from Pandas DataFrames 4.srt 9KB 19. Learn Python Part 2/41. List Comprehensions.srt 9KB 7. NumPy/10. Standard Deviation and Variance.srt 9KB 9. Scikit-learn Creating Machine Learning Models/19. Fitting A Model To The Data.srt 9KB 18. Learn Python/48. Sets 2.srt 9KB 9. Scikit-learn Creating Machine Learning Models/33. Evaluating A Regression Model 3 (MSE).srt 9KB 18. Learn Python/24. String Indexes.srt 9KB 19. Learn Python Part 2/21. Functions.srt 9KB 1. Introduction/1. Course Outline.srt 9KB 9. Scikit-learn Creating Machine Learning Models/22. Making Predictions With Our Model (Regression).srt 9KB 18. Learn Python/4. Our First Python Program.srt 9KB 8. Matplotlib + Seaborn Plotting and Data Visualization/9. Plotting From Pandas DataFrames.srt 9KB 9. Scikit-learn Creating Machine Learning Models/43. Saving And Loading A Model 2.srt 9KB 18. Learn Python/23. Formatted Strings.srt 9KB 7. NumPy/15. Sorting Arrays.srt 9KB 2. Machine Learning 101/1. What Is Machine Learning.srt 9KB 12. Milestone Project 2 Supervised Learning (Time Series Data)/6. Exploring Our Data 2.srt 9KB 18. Learn Python/28. Exercise Type Conversion.srt 9KB 18. Learn Python/32. List Slicing.srt 8KB 19. Learn Python Part 2/32. Scope Rules.srt 8KB 18. Learn Python/47. Sets.srt 8KB 19. Learn Python Part 2/8. Exercise Logical Operators.srt 8KB 19. Learn Python Part 2/40. reduce().srt 8KB 13. Data Engineering/7. Types Of Databases.srt 8KB 18. Learn Python/2. Python Interpreter.srt 8KB 18. Learn Python/5. Python 2 vs Python 3.srt 8KB 19. Learn Python Part 2/9. is vs ==.srt 8KB 19. Learn Python Part 2/7. Logical Operators.srt 8KB 2. Machine Learning 101/3. Exercise Machine Learning Playground.srt 8KB 19. Learn Python Part 2/29. args and kwargs.srt 8KB 8. Matplotlib + Seaborn Plotting and Data Visualization/2. Matplotlib Introduction.srt 8KB 18. Learn Python/30. Exercise Password Checker.srt 8KB 19. Learn Python Part 2/19. DEVELOPER FUNDAMENTALS IV.srt 8KB 3. Machine Learning and Data Science Framework/8. Modelling - Splitting Data.srt 8KB 5. Data Science Environment Setup/7. Windows Environment Setup.srt 8KB 13. Data Engineering/2. What Is Data.srt 8KB 19. Learn Python Part 2/10. For Loops.srt 8KB 7. NumPy/2. NumPy Introduction.srt 8KB 19. Learn Python Part 2/49. Different Ways To Import.srt 7KB 11. Milestone Project 1 Supervised Learning (Binary Classification)/18. Evaluating Our Model 2.srt 7KB 19. Learn Python Part 2/15. While Loops.srt 7KB 18. Learn Python/44. Dictionary Methods 2.srt 7KB 9. Scikit-learn Creating Machine Learning Models/34. Machine Learning Model Evaluation.html 7KB 18. Learn Python/40. Dictionaries.srt 7KB 2. Machine Learning 101/4. How Did We Get Here.srt 7KB 18. Learn Python/1. What Is A Programming Language.srt 7KB 19. Learn Python Part 2/11. Iterables.srt 7KB 3. Machine Learning and Data Science Framework/7. Features In Data.srt 7KB 19. Learn Python Part 2/33. global Keyword.srt 7KB 12. Milestone Project 2 Supervised Learning (Time Series Data)/2. Project Overview.srt 7KB 3. Machine Learning and Data Science Framework/3. 6 Step Machine Learning Framework.srt 7KB 19. Learn Python Part 2/42. Set Comprehensions.srt 7KB 3. Machine Learning and Data Science Framework/5. Types of Data.srt 7KB 18. Learn Python/3. How To Run Python Code.srt 6KB 9. Scikit-learn Creating Machine Learning Models/10. Quick Tip Clean, Transform, Reduce.srt 6KB 19. Learn Python Part 2/16. While Loops 2.srt 6KB 8. Matplotlib + Seaborn Plotting and Data Visualization/7. Subplots Option 2.srt 6KB 2. Machine Learning 101/2. AIMachine LearningData Science.srt 6KB 9. Scikit-learn Creating Machine Learning Models/4. Refresher What Is Machine Learning.srt 6KB 13. Data Engineering/4. What Is A Data Engineer 2.srt 6KB 18. Learn Python/19. Strings.srt 6KB 19. Learn Python Part 2/37. map().srt 6KB 3. Machine Learning and Data Science Framework/9. Modelling - Picking the Model.srt 6KB 5. Data Science Environment Setup/4. Conda Environments.srt 6KB 2. Machine Learning 101/8. What Is Machine Learning Round 2.srt 6KB 3. Machine Learning and Data Science Framework/13. Tools We Will Use.srt 6KB 19. Learn Python Part 2/4. Truthy vs Falsey.srt 6KB 19. Learn Python Part 2/23. Default Parameters and Keyword Arguments.srt 6KB 9. Scikit-learn Creating Machine Learning Models/25. Evaluating A Classification Model 1 (Accuracy).srt 6KB 19. Learn Python Part 2/13. range().srt 6KB 8. Matplotlib + Seaborn Plotting and Data Visualization/19. Saving And Sharing Your Plots.srt 6KB 18. Learn Python/37. Common List Patterns.srt 6KB 9. Scikit-learn Creating Machine Learning Models/32. Evaluating A Regression Model 2 (MAE).srt 6KB 18. Learn Python/45. Tuples.srt 6KB 2. Machine Learning 101/5. Exercise YouTube Recommendation Engine.srt 6KB 18. Learn Python/31. Lists.srt 6KB 18. Learn Python/11. Math Functions.srt 5KB 13. Data Engineering/5. What Is A Data Engineer 3.srt 5KB 19. Learn Python Part 2/28. Clean Code.srt 5KB 18. Learn Python/29. DEVELOPER FUNDAMENTALS II.srt 5KB 19. Learn Python Part 2/3. Indentation In Python.srt 5KB 2. Machine Learning 101/6. Types of Machine Learning.srt 5KB 1. Introduction/4. Your First Day.srt 5KB 18. Learn Python/43. Dictionary Methods.srt 5KB 7. NumPy/14. Comparison Operators.srt 5KB 19. Learn Python Part 2/17. break, continue, pass.srt 5KB 19. Learn Python Part 2/26. Methods vs Functions.srt 5KB 18. Learn Python/12. DEVELOPER FUNDAMENTALS I.srt 5KB 18. Learn Python/8. Python Data Types.srt 5KB 19. Learn Python Part 2/38. filter().srt 5KB 13. Data Engineering/13. Kafka and Stream Processing.srt 5KB 18. Learn Python/36. List Methods 3.srt 5KB 18. Learn Python/22. Escape Sequences.srt 5KB 3. Machine Learning and Data Science Framework/12. Experimentation.srt 5KB 19. Learn Python Part 2/43. Exercise Comprehensions.srt 5KB 13. Data Engineering/3. What Is A Data Engineer.srt 5KB 19. Learn Python Part 2/22. Parameters and Arguments.srt 5KB 3. Machine Learning and Data Science Framework/10. Modelling - Tuning.srt 5KB 19. Learn Python Part 2/5. Ternary Operator.srt 5KB 18. Learn Python/15. Optional bin() and complex.srt 5KB 19. Learn Python Part 2/35. Why Do We Need Scope.srt 5KB 4. The 2 Paths/1. The 2 Paths.srt 5KB 13. Data Engineering/11. Hadoop, HDFS and MapReduce.srt 5KB 19. Learn Python Part 2/30. Exercise Functions.srt 5KB 3. Machine Learning and Data Science Framework/1. Section Overview.srt 5KB 19. Learn Python Part 2/14. enumerate().srt 5KB 18. Learn Python/35. List Methods 2.srt 4KB 19. Learn Python Part 2/6. Short Circuiting.srt 4KB 19. Learn Python Part 2/20. Exercise Find Duplicates.srt 4KB 5. Data Science Environment Setup/2. Introducing Our Tools.srt 4KB 3. Machine Learning and Data Science Framework/6. Types of Evaluation.srt 4KB 19. Learn Python Part 2/27. Docstrings.srt 4KB 13. Data Engineering/1. Data Engineering Introduction.srt 4KB 18. Learn Python/42. Dictionary Keys.srt 4KB 18. Learn Python/33. Matrix.srt 4KB 9. Scikit-learn Creating Machine Learning Models/1. Section Overview.srt 4KB 19. Learn Python Part 2/34. nonlocal Keyword.srt 4KB 18. Learn Python/27. Booleans.srt 4KB 13. Data Engineering/6. What Is A Data Engineer 4.srt 4KB 19. Learn Python Part 2/31. Scope.srt 4KB 6. Pandas Data Analysis/1. Section Overview.srt 4KB 3. Machine Learning and Data Science Framework/2. Introducing Our Framework.srt 4KB 21. Where To Go From Here/2. Thank You.srt 4KB 18. Learn Python/41. DEVELOPER FUNDAMENTALS III.srt 4KB 19. Learn Python Part 2/12. Exercise Tricky Counter.srt 4KB 18. Learn Python/13. Operator Precedence.srt 4KB 18. Learn Python/25. Immutability.srt 3KB 5. Data Science Environment Setup/3. What is Conda.srt 3KB 19. Learn Python Part 2/39. zip().srt 3KB 11. Milestone Project 1 Supervised Learning (Binary Classification)/1. Section Overview.srt 3KB 7. NumPy/1. Section Overview.srt 3KB 9. Scikit-learn Creating Machine Learning Models/41. Quick Tip Correlation Analysis.srt 3KB 18. Learn Python/21. Type Conversion.srt 3KB 18. Learn Python/46. Tuples 2.srt 3KB 19. Learn Python Part 2/1. Breaking The Flow.srt 3KB 17. Career Advice + Extra Bits/7. JTS Start With Why.srt 3KB 18. Learn Python/18. Augmented Assignment Operator.srt 3KB 18. Learn Python/38. List Unpacking.srt 3KB 18. Learn Python/6. Exercise How Does Python Work.srt 3KB 8. Matplotlib + Seaborn Plotting and Data Visualization/1. Section Overview.srt 3KB 18. Learn Python/7. Learning Python.srt 3KB 1. Introduction/3. Exercise Meet The Community.html 3KB 17. Career Advice + Extra Bits/6. JTS Learn to Learn.srt 2KB 2. Machine Learning 101/9. Section Review.srt 2KB 8. Matplotlib + Seaborn Plotting and Data Visualization/8. Quick Tip Data Visualizations.srt 2KB 13. Data Engineering/12. Apache Spark and Apache Flink.srt 2KB 18. Learn Python/39. None.srt 2KB 1. Introduction/2. Join Our Online Classroom!.html 2KB 7. NumPy/17. Assignment NumPy Practice.html 2KB 5. Data Science Environment Setup/1. Section Overview.srt 2KB 9. Scikit-learn Creating Machine Learning Models/46. Scikit-Learn Practice.html 2KB 8. Matplotlib + Seaborn Plotting and Data Visualization/20. Assignment Matplotlib Practice.html 2KB 6. Pandas Data Analysis/12. Assignment Pandas Practice.html 2KB 9. Scikit-learn Creating Machine Learning Models/17. Quick Tip How ML Algorithms Work.srt 2KB 12. Milestone Project 2 Supervised Learning (Time Series Data)/1. Section Overview.srt 2KB 18. Learn Python/17. Expressions vs Statements.srt 2KB 22. Extras/1. Bonus Special Thank You Gift.html 2KB 17. Career Advice + Extra Bits/14. Exercise Contribute To Open Source.html 1KB 18. Learn Python/20. String Concatenation.srt 1KB 7. NumPy/3. Quick Note Correction In Next Video.html 1KB 19. Learn Python Part 2/44. Python Exam Testing Your Understanding.html 1KB 6. Pandas Data Analysis/5. Data from URLs.html 1KB 5. Data Science Environment Setup/9. Linux Environment Setup.html 1KB 7. NumPy/18. Optional Extra NumPy resources.html 1KB 9. Scikit-learn Creating Machine Learning Models/5. Quick Note Upcoming Videos.html 1018B 3. Machine Learning and Data Science Framework/14. Optional Elements of AI.html 975B 19. Learn Python Part 2/50. Next Steps.html 959B 17. Career Advice + Extra Bits/13. Coding Challenges.html 948B 21. Where To Go From Here/1. Become An Alumni.html 944B 6. Pandas Data Analysis/2. Downloading Workbooks and Assignments.html 774B 10. Supervised Learning Classification + Regression/1. Milestone Projects!.html 738B 20. Bonus Learn Advanced Statistics and Mathematics for FREE!/1. Statistics and Mathematics.html 710B 17. Career Advice + Extra Bits/1. Endorsements On LinkedIn.html 688B 18. Learn Python/14. Exercise Operator Precedence.html 683B 8. Matplotlib + Seaborn Plotting and Data Visualization/10. Quick Note Regular Expressions.html 632B 17. Career Advice + Extra Bits/2. Quick Note Upcoming Video.html 587B 17. Career Advice + Extra Bits/5. Quick Note Upcoming Videos.html 565B 13. Data Engineering/8. Quick Note Upcoming Video.html 481B 4. The 2 Paths/2. Python Developer Monthly.html 476B 19. Learn Python Part 2/46. Quick Note Upcoming Videos.html 448B 13. Data Engineering/10. Optional Learn SQL.html 410B 19. Learn Python Part 2/25. Exercise Tesla.html 402B 9. Scikit-learn Creating Machine Learning Models/3. Quick Note Upcoming Video.html 390B 6. Pandas Data Analysis/7.1 car-sales.csv.csv 369B 17. Career Advice + Extra Bits/8. Quick Note Upcoming Videos.html 352B 17. Career Advice + Extra Bits/4. Learning Guideline.html 310B 18. Learn Python/9. How To Succeed.html 280B 11. Milestone Project 1 Supervised Learning (Binary Classification)/3. Project Environment Setup.txt 239B 9. Scikit-learn Creating Machine Learning Models/16. Quick Note Decision Trees.html 221B 12. Milestone Project 2 Supervised Learning (Time Series Data)/19.2 End-to-end Bluebook Bulldozer Regression Notebook (same as in videos).html 214B 12. Milestone Project 2 Supervised Learning (Time Series Data)/2.1 End-to-end Bluebook Bulldozer Regression Notebook (same as in videos).html 214B 12. Milestone Project 2 Supervised Learning (Time Series Data)/19.1 End-to-end Bluebook Bulldozer Regression Notebook (with annotations).html 208B 12. Milestone Project 2 Supervised Learning (Time Series Data)/2.3 End-to-end Bluebook Bulldozer Regression Notebook (with annotations).html 208B 11. Milestone Project 1 Supervised Learning (Binary Classification)/2.1 End-to-end Heart Disease Classification Notebook (same as in videos).html 207B 11. Milestone Project 1 Supervised Learning (Binary Classification)/21.2 End-to-end Heart Disease Classification Notebook (same as in videos).html 207B 16. UPLOADED BY FEB 14th Storytelling + Communication How To Present Your Projects/1. This section will be done by FEB 14th.html 203B 14. UPLOADED BY FEB 7! - Neural Networks Deep Learning + Transfer Learning/1. This section will be done by FEB 7th.html 202B 15. UPLOADED BY FEB 7! - TensorFlow 2.0/1. This section will be done by FEB 7th.html 202B 11. Milestone Project 1 Supervised Learning (Binary Classification)/2.3 End-to-end Heart Disease Classification Notebook (with annotations).html 201B 11. Milestone Project 1 Supervised Learning (Binary Classification)/21.1 End-to-end Heart Disease Classification Notebook (with annotations).html 201B 9. Scikit-learn Creating Machine Learning Models/2.1 Introduction to Scikit-Learn Jupyter Notebook (from the upcoming videos).html 197B 9. Scikit-learn Creating Machine Learning Models/45.2 Introduction to Scikit-Learn Jupyter Notebook (from the videos).html 197B 8. Matplotlib + Seaborn Plotting and Data Visualization/19.1 Introduction to Matplotlib Notebook (from the videos).html 195B 8. Matplotlib + Seaborn Plotting and Data Visualization/2.1 Introduction to Matplotlib Jupyter Notebook (from the upcoming videos).html 195B 9. Scikit-learn Creating Machine Learning Models/6.1 Scikit-Learn Reference Notebook.html 194B 9. Scikit-learn Creating Machine Learning Models/7.1 Example Scikit-Learn Workflow Notebook.html 192B 6. Pandas Data Analysis/11.2 Introduction to Pandas Jupyter Notebook (from the videos).html 191B 6. Pandas Data Analysis/3.3 Introduction to Pandas Jupyter Notebook (from the upcoming videos).html 191B 9. Scikit-learn Creating Machine Learning Models/2.3 Introduction to Scikit-Learn Jupyter Notebook (with annotations).html 191B 9. Scikit-learn Creating Machine Learning Models/45.1 Introduction to Scikit-Learn Jupyter Notebook (with annotations).html 191B 7. NumPy/16.3 Introduction to NumPy Jupyter Notebook (from the videos).html 190B 7. NumPy/2.2 Introduction to NumPy Jupyter Notebook (from the upcoming videos).html 190B 6. Pandas Data Analysis/11.1 Introduction to Pandas Jupyter Notebook (with annotations).html 185B 6. Pandas Data Analysis/3.2 Introduction to Pandas Jupyter Notebook (with annotations).html 185B 7. NumPy/16.1 Introduction to NumPy Jupyter Notebook (with annotations).html 184B 7. NumPy/2.3 Introduction to NumPy Jupyter Notebook (with annotations).html 184B 21. Where To Go From Here/How you can help GetFreeCourses.Me.txt 182B How you can help GetFreeCourses.Me.txt 182B 19. Learn Python Part 2/4.1 Truthy vs Falsey Stackoverflow.html 170B 5. Data Science Environment Setup/3.1 Getting your computer ready for machine learning How.html 167B 18. Learn Python/5.1 Python 2 vs Python 3.html 161B 2. Machine Learning 101/7. Are You Getting It Yet.html 160B 11. Milestone Project 1 Supervised Learning (Binary Classification)/2.2 Structured Data Projects on GitHub.html 155B 12. Milestone Project 2 Supervised Learning (Time Series Data)/2.4 Structured Data Projects on GitHub.html 155B 3. Machine Learning and Data Science Framework/3.1 A 6 Step Field Guide for Machine Learning Modelling (blog post).html 147B 6. Pandas Data Analysis/9.2 Jake VanderPlas_s Data Manipulation with Pandas.html 146B 12. Milestone Project 2 Supervised Learning (Time Series Data)/9.1 Pandas Categorical Datatype Documentation.html 143B 5. Data Science Environment Setup/3.3 Getting started with Conda (documentation).html 139B 9. Scikit-learn Creating Machine Learning Models/14.1 Scikit-Learn machine learning map (how to choose the right machine learning model).html 133B 6. Pandas Data Analysis/3.4 10-minutes to pandas (from the pandas documentation).html 132B 13. Data Engineering/7.2 OLTP vs OLAP.html 126B 18. Learn Python/43.1 Dictionary Methods.html 119B 7. NumPy/12.1 Matrix Multiplication Explained.html 119B 12. Milestone Project 2 Supervised Learning (Time Series Data)/2.2 Kaggle Bluebook for Bulldozers Competition.html 118B 13. Data Engineering/7.1 A Primer on ACID Transactions.html 117B 18. Learn Python/16.1 Python Keywords.html 117B 18. Learn Python/35.2 Python Keywords.html 117B 5. Data Science Environment Setup/10.2 Dataquest Jupyter Notebook for Beginners Tutorial.html 117B 18. Learn Python/18.1 Exercise Repl.html 116B 21. Where To Go From Here/GetFreeCourses.Me.url 116B 7. NumPy/10.1 Standard deviation and variance explained.html 116B 7. NumPy/8.1 Standard deviation and variance explained.html 116B 7. NumPy/9.1 Standard deviation and variance explained.html 116B GetFreeCourses.Me.url 116B 18. Learn Python/26.2 String Methods.html 115B 18. Learn Python/46.1 Tuple Methods.html 114B 18. Learn Python/34.1 List Methods.html 113B 18. Learn Python/48.1 Sets Methods.html 112B 18. Learn Python/15.1 Base Numbers.html 111B 5. Data Science Environment Setup/10.3 Jupyter Notebook documentation.html 111B 18. Learn Python/26.1 Built in Functions.html 109B 19. Learn Python Part 2/30.1 Solution Repl.html 108B 6. Pandas Data Analysis/13.1 Course notebooks - Github.html 108B 9. Scikit-learn Creating Machine Learning Models/2.2 Scikit-Learn Documentation.html 108B 5. Data Science Environment Setup/5.1 Miniconda download documentation.html 107B 5. Data Science Environment Setup/7.1 Miniconda download documentation.html 107B 18. Learn Python/13.1 Exercise Repl.html 106B 18. Learn Python/14.1 Exercise Repl.html 106B 18. Learn Python/29.1 Python Comments Best Practices.html 106B 6. Pandas Data Analysis/3.1 Pandas Documentation.html 106B 18. Learn Python/10.1 Floating point numbers.html 104B 18. Learn Python/23.1 Exercise Repl.html 104B 18. Learn Python/5.2 The Story of Python.html 104B 8. Matplotlib + Seaborn Plotting and Data Visualization/2.2 Matplotlib Documentation.html 103B 19. Learn Python Part 2/20.1 Solution Repl.html 102B 19. Learn Python Part 2/43.1 Solution Repl.html 102B 18. Learn Python/24.1 Exercise Repl.html 101B 2. Machine Learning 101/3.1 Teachable Machine.html 101B 19. Learn Python Part 2/43.2 Exercise Repl.html 100B 19. Learn Python Part 2/18.1 Solution Repl.html 99B 19. Learn Python Part 2/18.2 Exercise Repl.html 99B 18. Learn Python/44.1 Exercise Repl.html 97B 19. Learn Python Part 2/34.1 Solution Repl.html 95B 6. Pandas Data Analysis/13.2 Google Colab.html 95B 18. Learn Python/35.1 Exercise Repl.html 94B 18. Learn Python/37.1 Exercise Repl.html 94B 18. Learn Python/33.1 Exercise Repl.html 93B 5. Data Science Environment Setup/3.2 Conda documentation.html 93B 13. Data Engineering/2.1 Kaggle.html 92B 18. Learn Python/32.1 Exercise Repl.html 92B 19. Learn Python Part 2/12.1 Solution Repl.html 92B 18. Learn Python/48.2 Exercise Repl.html 91B 2. Machine Learning 101/5.1 Machine Learning Playground.html 88B 7. NumPy/2.1 NumPy Documentation.html 83B 8. Matplotlib + Seaborn Plotting and Data Visualization/Tutnetflix.com - Telegram @FTUplusrip.txt 37B