[] Coursera - Bayesian Methods for Machine Learning
- 收录时间:2019-02-25 08:26:24
- 文件大小:2GB
- 下载次数:92
- 最近下载:2021-01-11 20:29:44
- 磁力链接:
-
文件列表
- 007.Latent Dirichlet Allocation/036. LDA M-step & prediction.mp4 93MB
- 006.Variational inference/028. Mean field approximation.mp4 77MB
- 007.Latent Dirichlet Allocation/034. LDA E-step, theta.mp4 76MB
- 011.Gaussian Processes and Bayesian Optimization/062. Derivation of main formula.mp4 70MB
- 006.Variational inference/029. Example Ising model.mp4 68MB
- 004.Expectation Maximization algorithm/017. E-step details.mp4 66MB
- 004.Expectation Maximization algorithm/020. Example EM for discrete mixture, M-step.mp4 65MB
- 005.Applications and examples/022. General EM for GMM.mp4 63MB
- 008.MCMC/041. Gibbs sampling.mp4 61MB
- 001.Introduction to Bayesian methods/004. Example thief & alarm.mp4 60MB
- 007.Latent Dirichlet Allocation/035. LDA E-step, z.mp4 59MB
- 004.Expectation Maximization algorithm/019. Example EM for discrete mixture, E-step.mp4 56MB
- 001.Introduction to Bayesian methods/005. Linear regression.mp4 50MB
- 009.Variational autoencoders/052. Scaling variational EM.mp4 48MB
- 008.MCMC/040. Markov Chains.mp4 47MB
- 008.MCMC/039. Sampling from 1-d distributions.mp4 47MB
- 008.MCMC/047. MCMC for LDA.mp4 47MB
- 008.MCMC/038. Monte Carlo estimation.mp4 45MB
- 008.MCMC/044. Metropolis-Hastings choosing the critic.mp4 42MB
- 005.Applications and examples/025. Probabilistic PCA.mp4 39MB
- 011.Gaussian Processes and Bayesian Optimization/063. Nuances of GP.mp4 37MB
- 003.Latent Variable Models/010. Latent Variable Models.mp4 37MB
- 008.MCMC/045. Example of Metropolis-Hastings.mp4 37MB
- 010.Variational Dropout/057. Dropout as Bayesian procedure.mp4 35MB
- 008.MCMC/048. Bayesian Neural Networks.mp4 34MB
- 009.Variational autoencoders/050. Modeling a distribution of images.mp4 32MB
- 004.Expectation Maximization algorithm/016. Expectation-Maximization algorithm.mp4 32MB
- 003.Latent Variable Models/013. Training GMM.mp4 32MB
- 003.Latent Variable Models/014. Example of GMM training.mp4 31MB
- 011.Gaussian Processes and Bayesian Optimization/064. Bayesian optimization.mp4 31MB
- 005.Applications and examples/024. K-means, M-step.mp4 31MB
- 010.Variational Dropout/056. Learning with priors.mp4 30MB
- 008.MCMC/043. Metropolis-Hastings.mp4 30MB
- 010.Variational Dropout/058. Sparse variational dropout.mp4 30MB
- 003.Latent Variable Models/012. Gaussian Mixture Model.mp4 29MB
- 005.Applications and examples/023. K-means from probabilistic perspective.mp4 28MB
- 004.Expectation Maximization algorithm/015. Jensen's inequality & Kullback Leibler divergence.mp4 28MB
- 008.MCMC/042. Example of Gibbs sampling.mp4 28MB
- 008.MCMC/046. Markov Chain Monte Carlo summary.mp4 27MB
- 009.Variational autoencoders/055. Reparameterization trick.mp4 25MB
- 009.Variational autoencoders/051. Using CNNs with a mixture of Gaussians.mp4 25MB
- 011.Gaussian Processes and Bayesian Optimization/060. Gaussian processes.mp4 24MB
- 001.Introduction to Bayesian methods/001. Think bayesian & Statistics review.mp4 24MB
- 005.Applications and examples/026. EM for Probabilistic PCA.mp4 22MB
- 003.Latent Variable Models/011. Probabilistic clustering.mp4 22MB
- 009.Variational autoencoders/054. Log derivative trick.mp4 21MB
- 007.Latent Dirichlet Allocation/032. Dirichlet distribution.mp4 20MB
- 004.Expectation Maximization algorithm/021. Summary of Expectation Maximization.mp4 20MB
- 009.Variational autoencoders/049. Scaling Variational Inference & Unbiased estimates.mp4 19MB
- 009.Variational autoencoders/053. Gradient of decoder.mp4 19MB
- 004.Expectation Maximization algorithm/018. M-step details.mp4 19MB
- 007.Latent Dirichlet Allocation/033. Latent Dirichlet Allocation.mp4 18MB
- 011.Gaussian Processes and Bayesian Optimization/059. Nonparametric methods.mp4 18MB
- 006.Variational inference/030. Variational EM & Review.mp4 17MB
- 001.Introduction to Bayesian methods/002. Bayesian approach to statistics.mp4 17MB
- 007.Latent Dirichlet Allocation/031. Topic modeling.mp4 17MB
- 011.Gaussian Processes and Bayesian Optimization/065. Applications of Bayesian optimization.mp4 17MB
- 002.Conjugate priors/008. Example Normal, precision.mp4 16MB
- 011.Gaussian Processes and Bayesian Optimization/061. GP for machine learning.mp4 16MB
- 007.Latent Dirichlet Allocation/037. Extensions of LDA.mp4 16MB
- 006.Variational inference/027. Why approximate inference.mp4 16MB
- 002.Conjugate priors/009. Example Bernoulli.mp4 14MB
- 002.Conjugate priors/006. Analytical inference.mp4 14MB
- 001.Introduction to Bayesian methods/003. How to define a model.mp4 10MB
- 002.Conjugate priors/007. Conjugate distributions.mp4 9MB
- 008.MCMC/047. MCMC for LDA.srt 21KB
- 009.Variational autoencoders/052. Scaling variational EM.srt 19KB
- 008.MCMC/038. Monte Carlo estimation.srt 17KB
- 006.Variational inference/029. Example Ising model.srt 17KB
- 008.MCMC/039. Sampling from 1-d distributions.srt 16KB
- 005.Applications and examples/025. Probabilistic PCA.srt 16KB
- 008.MCMC/040. Markov Chains.srt 16KB
- 003.Latent Variable Models/010. Latent Variable Models.srt 15KB
- 008.MCMC/048. Bayesian Neural Networks.srt 15KB
- 005.Applications and examples/022. General EM for GMM.srt 14KB
- 009.Variational autoencoders/050. Modeling a distribution of images.srt 14KB
- 011.Gaussian Processes and Bayesian Optimization/063. Nuances of GP.srt 14KB
- 003.Latent Variable Models/013. Training GMM.srt 14KB
- 004.Expectation Maximization algorithm/016. Expectation-Maximization algorithm.srt 13KB
- 003.Latent Variable Models/014. Example of GMM training.srt 13KB
- 004.Expectation Maximization algorithm/017. E-step details.srt 13KB
- 003.Latent Variable Models/012. Gaussian Mixture Model.srt 13KB
- 008.MCMC/041. Gibbs sampling.srt 13KB
- 001.Introduction to Bayesian methods/004. Example thief & alarm.srt 13KB
- 011.Gaussian Processes and Bayesian Optimization/064. Bayesian optimization.srt 13KB
- 008.MCMC/045. Example of Metropolis-Hastings.srt 12KB
- 008.MCMC/046. Markov Chain Monte Carlo summary.srt 12KB
- 004.Expectation Maximization algorithm/020. Example EM for discrete mixture, M-step.srt 12KB
- 004.Expectation Maximization algorithm/015. Jensen's inequality & Kullback Leibler divergence.srt 12KB
- 006.Variational inference/028. Mean field approximation.srt 12KB
- 007.Latent Dirichlet Allocation/036. LDA M-step & prediction.srt 12KB
- 001.Introduction to Bayesian methods/005. Linear regression.srt 11KB
- 005.Applications and examples/023. K-means from probabilistic perspective.srt 11KB
- 001.Introduction to Bayesian methods/001. Think bayesian & Statistics review.srt 11KB
- 004.Expectation Maximization algorithm/019. Example EM for discrete mixture, E-step.srt 10KB
- 008.MCMC/043. Metropolis-Hastings.srt 10KB
- 009.Variational autoencoders/051. Using CNNs with a mixture of Gaussians.srt 10KB
- 011.Gaussian Processes and Bayesian Optimization/060. Gaussian processes.srt 10KB
- 011.Gaussian Processes and Bayesian Optimization/062. Derivation of main formula.srt 9KB
- 007.Latent Dirichlet Allocation/034. LDA E-step, theta.srt 9KB
- 009.Variational autoencoders/055. Reparameterization trick.srt 9KB
- 008.MCMC/042. Example of Gibbs sampling.srt 9KB
- 008.MCMC/044. Metropolis-Hastings choosing the critic.srt 9KB
- 010.Variational Dropout/056. Learning with priors.srt 9KB
- 005.Applications and examples/026. EM for Probabilistic PCA.srt 9KB
- 010.Variational Dropout/057. Dropout as Bayesian procedure.srt 8KB
- 009.Variational autoencoders/049. Scaling Variational Inference & Unbiased estimates.srt 8KB
- 007.Latent Dirichlet Allocation/032. Dirichlet distribution.srt 8KB
- 004.Expectation Maximization algorithm/021. Summary of Expectation Maximization.srt 8KB
- 003.Latent Variable Models/011. Probabilistic clustering.srt 8KB
- 004.Expectation Maximization algorithm/018. M-step details.srt 8KB
- 009.Variational autoencoders/054. Log derivative trick.srt 8KB
- 009.Variational autoencoders/053. Gradient of decoder.srt 8KB
- 006.Variational inference/030. Variational EM & Review.srt 8KB
- 010.Variational Dropout/058. Sparse variational dropout.srt 7KB
- 011.Gaussian Processes and Bayesian Optimization/059. Nonparametric methods.srt 7KB
- 007.Latent Dirichlet Allocation/035. LDA E-step, z.srt 7KB
- 005.Applications and examples/024. K-means, M-step.srt 7KB
- 001.Introduction to Bayesian methods/002. Bayesian approach to statistics.srt 7KB
- 002.Conjugate priors/008. Example Normal, precision.srt 7KB
- 007.Latent Dirichlet Allocation/033. Latent Dirichlet Allocation.srt 7KB
- 007.Latent Dirichlet Allocation/031. Topic modeling.srt 7KB
- 011.Gaussian Processes and Bayesian Optimization/061. GP for machine learning.srt 6KB
- 006.Variational inference/027. Why approximate inference.srt 6KB
- 007.Latent Dirichlet Allocation/037. Extensions of LDA.srt 6KB
- 011.Gaussian Processes and Bayesian Optimization/065. Applications of Bayesian optimization.srt 6KB
- 002.Conjugate priors/009. Example Bernoulli.srt 5KB
- 002.Conjugate priors/006. Analytical inference.srt 5KB
- 001.Introduction to Bayesian methods/003. How to define a model.srt 4KB
- 002.Conjugate priors/007. Conjugate distributions.srt 3KB
- [FTU Forum].url 252B
- [FreeCoursesOnline.Me].url 133B
- [FreeTutorials.Us].url 119B