589689.xyz

[] Udemy - Python Bootcamp for Data Science 2021 Numpy Pandas & Seaborn

  • 收录时间:2023-10-15 11:32:09
  • 文件大小:2GB
  • 下载次数:1
  • 最近下载:2023-10-15 11:32:09
  • 磁力链接:

文件列表

  1. 15. Module 15 Real World Data Analysis Example/5. Housing Dataset Analysis -Part Five.mp4 40MB
  2. 1. Introduction/2. How to Download Course Notebooks.mp4 38MB
  3. 11. Module 11 Data Wrangling2 Combining and Merging Datasets/1. Merging Datasets on Keys (common columns).mp4 37MB
  4. 4. Module 4 Data Structures And Sequences In Python/2. List.mp4 36MB
  5. 13. Module 13 Data Visualization with Matplotlib and Seaborn/13. Scatter Plots and Pair Plots.mp4 36MB
  6. 6. Module 6 NumPy Arrays/10. Mathematical and Statistical Methods.mp4 35MB
  7. 7. Module 7 Pandas Dataframe/2. Dataframe in Pandas.mp4 34MB
  8. 14. Module 14 Time Series/6. Handling Time Zone.mp4 33MB
  9. 14. Module 14 Time Series/5. Shifting Data Through Time (Lagging and Leading).mp4 33MB
  10. 14. Module 14 Time Series/3. Basics of Time Series.mp4 33MB
  11. 15. Module 15 Real World Data Analysis Example/4. Housing Dataset Analysis -Part Four.mp4 32MB
  12. 13. Module 13 Data Visualization with Matplotlib and Seaborn/7. Adding Annotations and Drawings on a Plot.mp4 32MB
  13. 13. Module 13 Data Visualization with Matplotlib and Seaborn/2. Creating Figures and Subplots.mp4 31MB
  14. 10. Module 10 Data Wrangling1 Hierarchical Indexing/1. Hierarchical Indexing.mp4 31MB
  15. 6. Module 6 NumPy Arrays/2. Creating Ndarrays.mp4 31MB
  16. 11. Module 11 Data Wrangling2 Combining and Merging Datasets/3. Concatenating Along an Axis.mp4 30MB
  17. 14. Module 14 Time Series/8. Rolling and Moving Windows.mp4 30MB
  18. 15. Module 15 Real World Data Analysis Example/3. Housing Dataset Analysis -Part Three.mp4 30MB
  19. 14. Module 14 Time Series/4. Generating Date Ranges.mp4 29MB
  20. 12. Module 12 Data Wrangling3 Reshaping and Pivoting/3. Reshaping by Pivoting (Long to Wide).mp4 29MB
  21. 3. Module 3 Working with Jupyter Notebooks/1. Running Jupyter Notebook.mp4 29MB
  22. 13. Module 13 Data Visualization with Matplotlib and Seaborn/4. Customizing Ticks and Labels.mp4 29MB
  23. 6. Module 6 NumPy Arrays/7. Boolean Indexing.mp4 28MB
  24. 13. Module 13 Data Visualization with Matplotlib and Seaborn/12. Histograms and Density Plots.mp4 28MB
  25. 13. Module 13 Data Visualization with Matplotlib and Seaborn/14. Factor Plots for Categorical Data.mp4 27MB
  26. 1. Introduction/3. Overview of Course Curriculum.mp4 27MB
  27. 3. Module 3 Working with Jupyter Notebooks/2. Tour In Basics of Jupyter Notebooks.mp4 27MB
  28. 13. Module 13 Data Visualization with Matplotlib and Seaborn/9. Line Plots with Dataframe.mp4 27MB
  29. 12. Module 12 Data Wrangling3 Reshaping and Pivoting/1. Reshaping by Stacking and Unstacking.mp4 26MB
  30. 14. Module 14 Time Series/2. Converting Between String and Datetime.mp4 26MB
  31. 13. Module 13 Data Visualization with Matplotlib and Seaborn/11. Bar Plots with Seaborn.mp4 26MB
  32. 7. Module 7 Pandas Dataframe/6. Indexing, Slicing and Filtering.mp4 25MB
  33. 7. Module 7 Pandas Dataframe/1. Series in Pandas.mp4 25MB
  34. 13. Module 13 Data Visualization with Matplotlib and Seaborn/5. Adding Legends.mp4 25MB
  35. 5. Module 5 Functions in Python/1. Creating and Calling Functions.mp4 24MB
  36. 13. Module 13 Data Visualization with Matplotlib and Seaborn/6. Adding Texts and Arrows on a Plot.mp4 23MB
  37. 3. Module 3 Working with Jupyter Notebooks/5. Magic Commands.mp4 23MB
  38. 15. Module 15 Real World Data Analysis Example/2. Housing Dataset Analysis -Part Two.mp4 23MB
  39. 14. Module 14 Time Series/7. Resampling and Frequency Conversion.mp4 23MB
  40. 10. Module 10 Data Wrangling1 Hierarchical Indexing/4. Indexing with Columns in Dataframe.mp4 23MB
  41. 9. Module 9 Data Cleaning and Preprocessing/7. Filtering Outliers.mp4 22MB
  42. 8. Module 8 Data Loading, Storage with Pandas/1. Reading Data in Text Format-Part1.mp4 22MB
  43. 7. Module 7 Pandas Dataframe/7. Arithmetic with Dataframe.mp4 22MB
  44. 13. Module 13 Data Visualization with Matplotlib and Seaborn/3. Changing Colors, Markers and Linestyle.mp4 22MB
  45. 8. Module 8 Data Loading, Storage with Pandas/3. Writing Data in Text Format.mp4 22MB
  46. 8. Module 8 Data Loading, Storage with Pandas/2. Reading Data in Text Format-Part2.mp4 22MB
  47. 9. Module 9 Data Cleaning and Preprocessing/3. Filling in Missing Data.mp4 21MB
  48. 6. Module 6 NumPy Arrays/11. Sorting Arrays.mp4 21MB
  49. 9. Module 9 Data Cleaning and Preprocessing/8. Shuffling and Random Sampling.mp4 21MB
  50. 9. Module 9 Data Cleaning and Preprocessing/10. String Object Methods.mp4 21MB
  51. 6. Module 6 NumPy Arrays/3. Data Types for Ndarrays.mp4 21MB
  52. 13. Module 13 Data Visualization with Matplotlib and Seaborn/10. Bar Plots with Dataframes.mp4 21MB
  53. 7. Module 7 Pandas Dataframe/9. Descriptive Statistics with Dataframe.mp4 20MB
  54. 9. Module 9 Data Cleaning and Preprocessing/2. Filtering out Missing Data.mp4 20MB
  55. 7. Module 7 Pandas Dataframe/8. Sorting Series and Dataframe.mp4 20MB
  56. 14. Module 14 Time Series/1. Date and time Data types.mp4 20MB
  57. 2. Module 2 Setting Python Environment/3. Cloud Environment Google Colab Jupyter Notebooks.mp4 20MB
  58. 4. Module 4 Data Structures And Sequences In Python/1. Tuple.mp4 20MB
  59. 6. Module 6 NumPy Arrays/6. Indexing and Slicing-Part two.mp4 20MB
  60. 7. Module 7 Pandas Dataframe/3. Index Objects.mp4 19MB
  61. 7. Module 7 Pandas Dataframe/10. Correlation and Covariance.mp4 19MB
  62. 13. Module 13 Data Visualization with Matplotlib and Seaborn/8. Saving Plots to a File.mp4 18MB
  63. 6. Module 6 NumPy Arrays/8. Fancy Indexing.mp4 18MB
  64. 6. Module 6 NumPy Arrays/5. Indexing and Slicing-Part One.mp4 18MB
  65. 10. Module 10 Data Wrangling1 Hierarchical Indexing/3. Summary Statistics by Level.mp4 17MB
  66. 9. Module 9 Data Cleaning and Preprocessing/9. Dummy Variables.mp4 16MB
  67. 6. Module 6 NumPy Arrays/12. File Input and Output with Arrays.mp4 16MB
  68. 3. Module 3 Working with Jupyter Notebooks/4. Getting Help in Jupyter Notebook.mp4 16MB
  69. 5. Module 5 Functions in Python/3. Lambda Functions.mp4 15MB
  70. 3. Module 3 Working with Jupyter Notebooks/3. Cell Types in Jupyter Notebook.mp4 15MB
  71. 11. Module 11 Data Wrangling2 Combining and Merging Datasets/2. Merging Datasets on Index.mp4 15MB
  72. 4. Module 4 Data Structures And Sequences In Python/3. Dictionary.mp4 15MB
  73. 10. Module 10 Data Wrangling1 Hierarchical Indexing/2. Reordering and Sorting Index Levels.mp4 14MB
  74. 1. Introduction/1. Course Introduction.mp4 14MB
  75. 9. Module 9 Data Cleaning and Preprocessing/5. Replacing Values.mp4 14MB
  76. 7. Module 7 Pandas Dataframe/4. Reindexing in Series and DataFrames.mp4 13MB
  77. 9. Module 9 Data Cleaning and Preprocessing/1. Handling Missing Data.mp4 13MB
  78. 6. Module 6 NumPy Arrays/4. Arithmetic with NumPy Arrays.mp4 13MB
  79. 9. Module 9 Data Cleaning and Preprocessing/4. Removing Duplicate Entries.mp4 13MB
  80. 8. Module 8 Data Loading, Storage with Pandas/4. Reading Microsoft Excel Files.mp4 12MB
  81. 2. Module 2 Setting Python Environment/1. Decide Which Python Environment to Use.mp4 12MB
  82. 6. Module 6 NumPy Arrays/1. What Is NumPy Arrays (Ndarrays).mp4 12MB
  83. 13. Module 13 Data Visualization with Matplotlib and Seaborn/1. Introducing Matplotlib Library.mp4 11MB
  84. 9. Module 9 Data Cleaning and Preprocessing/6. Renaming columns and Index Labels.mp4 11MB
  85. 15. Module 15 Real World Data Analysis Example/1. Housing Dataset Analysis -Part One.mp4 11MB
  86. 2. Module 2 Setting Python Environment/2. Local environment Installing Anaconda.mp4 10MB
  87. 12. Module 12 Data Wrangling3 Reshaping and Pivoting/2. Reshaping by Melting (Wide to Long ).mp4 9MB
  88. 5. Module 5 Functions in Python/2. Returning Multiple Values.mp4 9MB
  89. 6. Module 6 NumPy Arrays/9. Transposing Arrays.mp4 9MB
  90. 7. Module 7 Pandas Dataframe/5. Deleting Rows and Columns.mp4 5MB
  91. 4. Module 4 Data Structures And Sequences In Python/4. Set.mp4 4MB
  92. 1. Introduction/2.1 How to download course notebooks.pdf 140KB
  93. 4. Module 4 Data Structures And Sequences In Python/2. List.srt 9KB
  94. 15. Module 15 Real World Data Analysis Example/5. Housing Dataset Analysis -Part Five.srt 9KB
  95. 11. Module 11 Data Wrangling2 Combining and Merging Datasets/1. Merging Datasets on Keys (common columns).srt 8KB
  96. 7. Module 7 Pandas Dataframe/2. Dataframe in Pandas.srt 8KB
  97. 13. Module 13 Data Visualization with Matplotlib and Seaborn/7. Adding Annotations and Drawings on a Plot.srt 8KB
  98. 6. Module 6 NumPy Arrays/2. Creating Ndarrays.srt 7KB
  99. 14. Module 14 Time Series/3. Basics of Time Series.srt 7KB
  100. 11. Module 11 Data Wrangling2 Combining and Merging Datasets/3. Concatenating Along an Axis.srt 7KB
  101. 3. Module 3 Working with Jupyter Notebooks/2. Tour In Basics of Jupyter Notebooks.srt 7KB
  102. 14. Module 14 Time Series/8. Rolling and Moving Windows.srt 7KB
  103. 13. Module 13 Data Visualization with Matplotlib and Seaborn/2. Creating Figures and Subplots.srt 7KB
  104. 6. Module 6 NumPy Arrays/10. Mathematical and Statistical Methods.srt 7KB
  105. 14. Module 14 Time Series/5. Shifting Data Through Time (Lagging and Leading).srt 7KB
  106. 10. Module 10 Data Wrangling1 Hierarchical Indexing/1. Hierarchical Indexing.srt 6KB
  107. 12. Module 12 Data Wrangling3 Reshaping and Pivoting/3. Reshaping by Pivoting (Long to Wide).srt 6KB
  108. 13. Module 13 Data Visualization with Matplotlib and Seaborn/14. Factor Plots for Categorical Data.srt 6KB
  109. 15. Module 15 Real World Data Analysis Example/4. Housing Dataset Analysis -Part Four.srt 6KB
  110. 1. Introduction/2. How to Download Course Notebooks.srt 6KB
  111. 5. Module 5 Functions in Python/1. Creating and Calling Functions.srt 6KB
  112. 7. Module 7 Pandas Dataframe/6. Indexing, Slicing and Filtering.srt 6KB
  113. 6. Module 6 NumPy Arrays/7. Boolean Indexing.srt 6KB
  114. 3. Module 3 Working with Jupyter Notebooks/1. Running Jupyter Notebook.srt 6KB
  115. 1. Introduction/3. Overview of Course Curriculum.srt 6KB
  116. 7. Module 7 Pandas Dataframe/1. Series in Pandas.srt 6KB
  117. 12. Module 12 Data Wrangling3 Reshaping and Pivoting/2. Reshaping by Melting (Wide to Long ).srt 6KB
  118. 8. Module 8 Data Loading, Storage with Pandas/1. Reading Data in Text Format-Part1.srt 6KB
  119. 14. Module 14 Time Series/6. Handling Time Zone.srt 6KB
  120. 13. Module 13 Data Visualization with Matplotlib and Seaborn/11. Bar Plots with Seaborn.srt 6KB
  121. 12. Module 12 Data Wrangling3 Reshaping and Pivoting/1. Reshaping by Stacking and Unstacking.srt 6KB
  122. 14. Module 14 Time Series/7. Resampling and Frequency Conversion.srt 6KB
  123. 13. Module 13 Data Visualization with Matplotlib and Seaborn/13. Scatter Plots and Pair Plots.srt 5KB
  124. 14. Module 14 Time Series/2. Converting Between String and Datetime.srt 5KB
  125. 2. Module 2 Setting Python Environment/3. Cloud Environment Google Colab Jupyter Notebooks.srt 5KB
  126. 13. Module 13 Data Visualization with Matplotlib and Seaborn/12. Histograms and Density Plots.srt 5KB
  127. 7. Module 7 Pandas Dataframe/7. Arithmetic with Dataframe.srt 5KB
  128. 4. Module 4 Data Structures And Sequences In Python/1. Tuple.srt 5KB
  129. 10. Module 10 Data Wrangling1 Hierarchical Indexing/4. Indexing with Columns in Dataframe.srt 5KB
  130. 13. Module 13 Data Visualization with Matplotlib and Seaborn/6. Adding Texts and Arrows on a Plot.srt 5KB
  131. 6. Module 6 NumPy Arrays/3. Data Types for Ndarrays.srt 5KB
  132. 13. Module 13 Data Visualization with Matplotlib and Seaborn/4. Customizing Ticks and Labels.srt 5KB
  133. 9. Module 9 Data Cleaning and Preprocessing/7. Filtering Outliers.srt 5KB
  134. 9. Module 9 Data Cleaning and Preprocessing/10. String Object Methods.srt 5KB
  135. 13. Module 13 Data Visualization with Matplotlib and Seaborn/9. Line Plots with Dataframe.srt 5KB
  136. 6. Module 6 NumPy Arrays/6. Indexing and Slicing-Part two.srt 5KB
  137. 7. Module 7 Pandas Dataframe/9. Descriptive Statistics with Dataframe.srt 5KB
  138. 14. Module 14 Time Series/4. Generating Date Ranges.srt 5KB
  139. 1. Introduction/1. Course Introduction.srt 5KB
  140. 15. Module 15 Real World Data Analysis Example/3. Housing Dataset Analysis -Part Three.srt 5KB
  141. 3. Module 3 Working with Jupyter Notebooks/4. Getting Help in Jupyter Notebook.srt 5KB
  142. 9. Module 9 Data Cleaning and Preprocessing/3. Filling in Missing Data.srt 4KB
  143. 14. Module 14 Time Series/1. Date and time Data types.srt 4KB
  144. 13. Module 13 Data Visualization with Matplotlib and Seaborn/5. Adding Legends.srt 4KB
  145. 7. Module 7 Pandas Dataframe/8. Sorting Series and Dataframe.srt 4KB
  146. 9. Module 9 Data Cleaning and Preprocessing/2. Filtering out Missing Data.srt 4KB
  147. 8. Module 8 Data Loading, Storage with Pandas/2. Reading Data in Text Format-Part2.srt 4KB
  148. 6. Module 6 NumPy Arrays/8. Fancy Indexing.srt 4KB
  149. 8. Module 8 Data Loading, Storage with Pandas/3. Writing Data in Text Format.srt 4KB
  150. 13. Module 13 Data Visualization with Matplotlib and Seaborn/10. Bar Plots with Dataframes.srt 4KB
  151. 15. Module 15 Real World Data Analysis Example/1. Housing Dataset Analysis -Part One.srt 4KB
  152. 15. Module 15 Real World Data Analysis Example/2. Housing Dataset Analysis -Part Two.srt 4KB
  153. 2. Module 2 Setting Python Environment/1. Decide Which Python Environment to Use.srt 4KB
  154. 2. Module 2 Setting Python Environment/2. Local environment Installing Anaconda.srt 4KB
  155. 3. Module 3 Working with Jupyter Notebooks/5. Magic Commands.srt 4KB
  156. 6. Module 6 NumPy Arrays/5. Indexing and Slicing-Part One.srt 4KB
  157. 10. Module 10 Data Wrangling1 Hierarchical Indexing/3. Summary Statistics by Level.srt 4KB
  158. 9. Module 9 Data Cleaning and Preprocessing/8. Shuffling and Random Sampling.srt 4KB
  159. 7. Module 7 Pandas Dataframe/10. Correlation and Covariance.srt 4KB
  160. 3. Module 3 Working with Jupyter Notebooks/3. Cell Types in Jupyter Notebook.srt 4KB
  161. 13. Module 13 Data Visualization with Matplotlib and Seaborn/3. Changing Colors, Markers and Linestyle.srt 4KB
  162. 7. Module 7 Pandas Dataframe/3. Index Objects.srt 4KB
  163. 9. Module 9 Data Cleaning and Preprocessing/9. Dummy Variables.srt 4KB
  164. 13. Module 13 Data Visualization with Matplotlib and Seaborn/8. Saving Plots to a File.srt 4KB
  165. 5. Module 5 Functions in Python/3. Lambda Functions.srt 4KB
  166. 6. Module 6 NumPy Arrays/11. Sorting Arrays.srt 4KB
  167. 9. Module 9 Data Cleaning and Preprocessing/5. Replacing Values.srt 4KB
  168. 9. Module 9 Data Cleaning and Preprocessing/1. Handling Missing Data.srt 3KB
  169. 4. Module 4 Data Structures And Sequences In Python/3. Dictionary.srt 3KB
  170. 7. Module 7 Pandas Dataframe/5. Deleting Rows and Columns.srt 3KB
  171. 6. Module 6 NumPy Arrays/12. File Input and Output with Arrays.srt 3KB
  172. 13. Module 13 Data Visualization with Matplotlib and Seaborn/1. Introducing Matplotlib Library.srt 3KB
  173. 6. Module 6 NumPy Arrays/4. Arithmetic with NumPy Arrays.srt 3KB
  174. 11. Module 11 Data Wrangling2 Combining and Merging Datasets/2. Merging Datasets on Index.srt 3KB
  175. 10. Module 10 Data Wrangling1 Hierarchical Indexing/2. Reordering and Sorting Index Levels.srt 3KB
  176. 7. Module 7 Pandas Dataframe/4. Reindexing in Series and DataFrames.srt 3KB
  177. 6. Module 6 NumPy Arrays/1. What Is NumPy Arrays (Ndarrays).srt 3KB
  178. 9. Module 9 Data Cleaning and Preprocessing/6. Renaming columns and Index Labels.srt 3KB
  179. 9. Module 9 Data Cleaning and Preprocessing/4. Removing Duplicate Entries.srt 3KB
  180. 8. Module 8 Data Loading, Storage with Pandas/4. Reading Microsoft Excel Files.srt 2KB
  181. 4. Module 4 Data Structures And Sequences In Python/4. Set.srt 2KB
  182. 5. Module 5 Functions in Python/2. Returning Multiple Values.srt 2KB
  183. 6. Module 6 NumPy Arrays/9. Transposing Arrays.srt 2KB
  184. 10. Module 10 Data Wrangling1 Hierarchical Indexing/5. Short Quiz.html 213B
  185. 11. Module 11 Data Wrangling2 Combining and Merging Datasets/4. Short Quiz.html 213B
  186. 12. Module 12 Data Wrangling3 Reshaping and Pivoting/4. Short Quiz.html 213B
  187. 13. Module 13 Data Visualization with Matplotlib and Seaborn/15. Short Quiz.html 213B
  188. 14. Module 14 Time Series/9. Short Quiz.html 213B
  189. 4. Module 4 Data Structures And Sequences In Python/5. Short Quiz.html 213B
  190. 5. Module 5 Functions in Python/4. Short Quiz.html 213B
  191. 6. Module 6 NumPy Arrays/13. Short Quiz.html 213B
  192. 7. Module 7 Pandas Dataframe/11. Short Quiz.html 213B
  193. 8. Module 8 Data Loading, Storage with Pandas/5. Short Quiz.html 213B
  194. 9. Module 9 Data Cleaning and Preprocessing/11. Short Quiz.html 213B
  195. 0. Websites you may like/[Tutorialsplanet.NET].url 128B
  196. 11. Module 11 Data Wrangling2 Combining and Merging Datasets/[Tutorialsplanet.NET].url 128B
  197. 13. Module 13 Data Visualization with Matplotlib and Seaborn/[Tutorialsplanet.NET].url 128B
  198. 15. Module 15 Real World Data Analysis Example/[Tutorialsplanet.NET].url 128B
  199. 6. Module 6 NumPy Arrays/[Tutorialsplanet.NET].url 128B
  200. 8. Module 8 Data Loading, Storage with Pandas/[Tutorialsplanet.NET].url 128B
  201. [Tutorialsplanet.NET].url 128B