[] Udemy - Data Science with Python - Beginners
- 收录时间:2019-11-25 15:38:03
- 文件大小:1GB
- 下载次数:95
- 最近下载:2021-01-20 14:15:14
- 磁力链接:
-
文件列表
- 6. Gradient Descent/4. Creating Normal Histogram.mp4 65MB
- 4. Linear Algebra/4. Understanding Central Tendencies.mp4 63MB
- 5. Probability/7. Defining the Next Value.mp4 60MB
- 6. Gradient Descent/1. Value Import.mp4 59MB
- 6. Gradient Descent/3. Working with Data Analysis.mp4 56MB
- 4. Linear Algebra/2. Matrices in Linear Algebra.mp4 53MB
- 6. Gradient Descent/2. Output Functions for Gradient.mp4 52MB
- 5. Probability/6. Example on Hypothesis Testing.mp4 49MB
- 6. Gradient Descent/5. Two Dimensional Graph.mp4 49MB
- 6. Gradient Descent/6. Multiple Scatter Plots.mp4 46MB
- 5. Probability/2. Normal Distribution Curve.mp4 44MB
- 6. Gradient Descent/8. Learnig Box Plots.mp4 40MB
- 3. Advanced Python/4. Creating Bar Charts.mp4 39MB
- 5. Probability/2. Normal Distribution Curve.vtt 38MB
- 5. Probability/4. Central Limit Theorem.mp4 37MB
- 4. Linear Algebra/1. Vector Spaces in Linear Algebra.mp4 35MB
- 3. Advanced Python/6. Understanding Scattered Plots.mp4 35MB
- 6. Gradient Descent/7. Analyzing Data Sets.mp4 35MB
- 4. Linear Algebra/5. Dispersion for Data.mp4 34MB
- 5. Probability/3. Example for Normal Distribution Curve.mp4 33MB
- 5. Probability/12. Example on Gradient Descent.mp4 32MB
- 5. Probability/10. Line of Best Fit.mp4 31MB
- 3. Advanced Python/5. Analysis on Line Chart.mp4 30MB
- 4. Linear Algebra/3. Analysing Statistical Data.mp4 29MB
- 2. What is Data Science/3. Various Python Scripts.mp4 29MB
- 5. Probability/9. Understanding Bayesian Inference.mp4 28MB
- 2. What is Data Science/2. Python Environment Framework.mp4 28MB
- 5. Probability/8. Principle of P Hacking.mp4 27MB
- 3. Advanced Python/1. Concept of Advanced Python.mp4 27MB
- 5. Probability/5. Concept of Hypothesis.mp4 26MB
- 3. Advanced Python/2. Creating Functions for Python.mp4 24MB
- 3. Advanced Python/3. Creating a New Library.mp4 23MB
- 5. Probability/1. Probability in Discreet Mathematics.mp4 21MB
- 2. What is Data Science/1. Understanding Data Science.mp4 18MB
- 1. Introduction/1. Introduction to Data Visualization.mp4 17MB
- 5. Probability/11. Datascience with Gradient Descent.mp4 14MB
- 7. Conclusion/1. Overview and Conclusion.mp4 13MB
- 1. Introduction/1.1 Data Science with Python.zip.zip 889KB
- 4. Linear Algebra/2. Matrices in Linear Algebra.vtt 10KB
- 4. Linear Algebra/4. Understanding Central Tendencies.vtt 10KB
- 6. Gradient Descent/3. Working with Data Analysis.vtt 8KB
- 3. Advanced Python/4. Creating Bar Charts.vtt 8KB
- 5. Probability/7. Defining the Next Value.vtt 8KB
- 5. Probability/6. Example on Hypothesis Testing.vtt 6KB
- 2. What is Data Science/3. Various Python Scripts.vtt 6KB
- 6. Gradient Descent/4. Creating Normal Histogram.vtt 6KB
- 4. Linear Algebra/1. Vector Spaces in Linear Algebra.vtt 6KB
- 3. Advanced Python/1. Concept of Advanced Python.vtt 6KB
- 5. Probability/4. Central Limit Theorem.vtt 6KB
- 6. Gradient Descent/1. Value Import.vtt 6KB
- 4. Linear Algebra/3. Analysing Statistical Data.vtt 6KB
- 6. Gradient Descent/6. Multiple Scatter Plots.vtt 6KB
- 2. What is Data Science/1. Understanding Data Science.vtt 6KB
- 3. Advanced Python/6. Understanding Scattered Plots.vtt 6KB
- 6. Gradient Descent/8. Learnig Box Plots.vtt 6KB
- 6. Gradient Descent/5. Two Dimensional Graph.vtt 6KB
- 3. Advanced Python/5. Analysis on Line Chart.vtt 6KB
- 6. Gradient Descent/2. Output Functions for Gradient.vtt 6KB
- 6. Gradient Descent/7. Analyzing Data Sets.vtt 5KB
- 4. Linear Algebra/5. Dispersion for Data.vtt 5KB
- 5. Probability/3. Example for Normal Distribution Curve.vtt 5KB
- 5. Probability/9. Understanding Bayesian Inference.vtt 5KB
- 2. What is Data Science/2. Python Environment Framework.vtt 5KB
- 5. Probability/12. Example on Gradient Descent.vtt 5KB
- 1. Introduction/1. Introduction to Data Visualization.vtt 5KB
- 3. Advanced Python/3. Creating a New Library.vtt 5KB
- 3. Advanced Python/2. Creating Functions for Python.vtt 4KB
- 5. Probability/8. Principle of P Hacking.vtt 4KB
- 5. Probability/10. Line of Best Fit.vtt 4KB
- 5. Probability/1. Probability in Discreet Mathematics.vtt 4KB
- 5. Probability/5. Concept of Hypothesis.vtt 4KB
- 7. Conclusion/1. Overview and Conclusion.vtt 4KB
- 5. Probability/11. Datascience with Gradient Descent.vtt 4KB
- [FCS Forum].url 133B
- [FreeCourseSite.com].url 127B
- [CourseClub.NET].url 123B