[UdemyCourseDownloader] Machine Learning A-Z Become Kaggle Master 收录时间:2019-05-09 13:42:25 文件大小:14GB 下载次数:51 最近下载:2020-09-29 14:18:31 磁力链接: magnet:?xt=urn:btih:fd2db670761e9e7dade0a30c9c5eca4c94d13e31 立即下载 复制链接 文件列表 17. Logistic Regression/4. Case Study.mp4 198MB 7. Data Visualisation/2. Seaborn.mp4 185MB 15. Model Selection Part1/4. Gridsearch Case study Part2.mp4 179MB 7. Data Visualisation/1. Matplotlib.mp4 173MB 2. Numpy/3. Numpy Operations Part2.mp4 170MB 18. Support Vector Machine (SVM)/14. Case Study 4.mp4 164MB 4. Some Fun With Maths/1. Linear Algebra Vectors.mp4 162MB 23. Dimension Reduction/1. Introduction.mp4 157MB 20. Ensembling/16. Case Study Part1.mp4 142MB 9. Simple Linear Regression/7. LR Case Study Part1.mp4 138MB 26. Project Kaggle/2. Playing With The Data.mp4 137MB 20. Ensembling/17. Case Study Part2.mp4 137MB 26. Project Kaggle/17. Building Machine Learning model part2.mp4 135MB 10. Multiple Linear Regression/9. Case Study Part4.mp4 132MB 2. Numpy/2. Numpy Operations Part1.mp4 129MB 19. Decision Tree/9. DT Case Study Part1.mp4 125MB 15. Model Selection Part1/3. Gridsearch Case study Part1.mp4 124MB 26. Project Kaggle/16. Building Machine Learning model part1.mp4 124MB 23. Dimension Reduction/5. Case Study Part2.mp4 123MB 26. Project Kaggle/5. Train, Test And Cross Validation Split.mp4 116MB 14. Model Performance Metrics/1. Performance Metrics Part1.mp4 114MB 7. Data Visualisation/3. Case Study.mp4 113MB 26. Project Kaggle/3. Translating the Problem In Machine Learning World.mp4 113MB 1. Python Fundamentals/5. Variables in Python.mp4 110MB 24. Advanced Machine Learning Algorithms/8. Case Study.mp4 106MB 1. Python Fundamentals/11. String Part1.mp4 106MB 21. Model Selection Part2/1. Model Selection Part1.mp4 104MB 25. Deep Learning/6. Neural Network Playground.mp4 104MB 10. Multiple Linear Regression/3. Case Study part2.mp4 98MB 23. Dimension Reduction/2. PCA.mp4 98MB 26. Project Kaggle/4. Dealing with Text Data.mp4 98MB 23. Dimension Reduction/3. Maths Behind PCA.mp4 97MB 22. Unsupervised Learning/9. Case Study Part1.mp4 96MB 19. Decision Tree/10. DT Case Study Part2.mp4 96MB 16. Naive Bayes/9. Case Study 1.mp4 95MB 4. Some Fun With Maths/2. Linear Algebra Matrix Part1.mp4 95MB 1. Python Fundamentals/1. Introduction to the course.mp4 94MB 26. Project Kaggle/1. Introduction to the Problem Statement.mp4 93MB 14. Model Performance Metrics/2. Performance Metrics Part2.mp4 90MB 1. Python Fundamentals/2. Introduction to Kaggle.mp4 90MB 18. Support Vector Machine (SVM)/11. Case Study 2.mp4 90MB 11. HotstarNetflix Real world Case Study for Multiple Linear Regression/4. Building Model Part2.mp4 88MB 1. Python Fundamentals/14. List Part2.mp4 87MB 1. Python Fundamentals/10. Functions.mp4 86MB 26. Project Kaggle/6. Understanding Evaluation Matrix Log Loss.mp4 86MB 13. KNN/11. Classification Case1.mp4 84MB 10. Multiple Linear Regression/2. Case Study part1.mp4 83MB 8. Exploratory Data Analysis/10. Univariate Analysis Part1.mp4 83MB 1. Python Fundamentals/3. Installation of Python and Anaconda.mp4 82MB 11. HotstarNetflix Real world Case Study for Multiple Linear Regression/2. Playing With Data.mp4 81MB 16. Naive Bayes/3. Practical Example from NB with One Column.mp4 81MB 4. Some Fun With Maths/3. Linear Algebra Matrix Part2.mp4 78MB 1. Python Fundamentals/9. for while Loop.mp4 78MB 8. Exploratory Data Analysis/8. Data Cleaning part1.mp4 76MB 20. Ensembling/18. Case Study Part3.mp4 75MB 16. Naive Bayes/10. Case Study 2 Part1.mp4 75MB 18. Support Vector Machine (SVM)/7. SVM Case Study Part1.mp4 74MB 1. Python Fundamentals/15. List Part3.mp4 74MB 16. Naive Bayes/1. Introduction to Naive Bayes.mp4 73MB 20. Ensembling/5. Case study.mp4 73MB 10. Multiple Linear Regression/7. Case Study Part2.mp4 73MB 26. Project Kaggle/12. Significance of first categorical column.mp4 72MB 12. Gradient Descent/8. Gradient Descent case study.mp4 72MB 20. Ensembling/2. Bagging.mp4 71MB 18. Support Vector Machine (SVM)/10. Kernel Part2.mp4 71MB 26. Project Kaggle/9. First Categorical column analysis.mp4 71MB 13. KNN/10. Case Study.mp4 71MB 1. Python Fundamentals/20. Comprehentions.mp4 71MB 10. Multiple Linear Regression/4. Case Study part3.mp4 69MB 10. Multiple Linear Regression/6. Case Study Part1.mp4 69MB 26. Project Kaggle/7. Building A Worst Model.mp4 68MB 1. Python Fundamentals/17. Tuples.mp4 67MB 26. Project Kaggle/14. Third Categorical column.mp4 67MB 10. Multiple Linear Regression/8. Case Study Part3.mp4 67MB 3. Pandas/3. DataFrame.mp4 66MB 18. Support Vector Machine (SVM)/8. SVM Case Study Part2.mp4 66MB 18. Support Vector Machine (SVM)/3. Hyperplane Part2.mp4 65MB 24. Advanced Machine Learning Algorithms/4. Optimal Solution.mp4 65MB 10. Multiple Linear Regression/11. Case Study Part6 (RFE).mp4 64MB 1. Python Fundamentals/8. If else Loop.mp4 64MB 1. Python Fundamentals/16. List Part4.mp4 64MB 25. Deep Learning/5. Multi Layered Perceptron.mp4 64MB 16. Naive Bayes/2. Bayes Theorem.mp4 63MB 25. Deep Learning/3. History.mp4 62MB 1. Python Fundamentals/19. Dictionaries.mp4 62MB 3. Pandas/2. Series.mp4 61MB 22. Unsupervised Learning/10. Case Study Part2.mp4 61MB 18. Support Vector Machine (SVM)/13. Case Study 3 Part2.mp4 61MB 12. Gradient Descent/1. Pre-Req For Gradient Descent Part1.mp4 61MB 8. Exploratory Data Analysis/11. Univariate Analysis Part2.mp4 61MB 8. Exploratory Data Analysis/13. Bivariate Analysis.mp4 61MB 26. Project Kaggle/1.1 training.zip.zip 60MB 16. Naive Bayes/4. Practical Example from NB with Multiple Columns.mp4 60MB 3. Pandas/7. loc and iloc.mp4 59MB 22. Unsupervised Learning/1. Introduction to Clustering.mp4 59MB 26. Project Kaggle/8. Evaluating Worst ML Model.mp4 59MB 18. Support Vector Machine (SVM)/1. Introduction.mp4 59MB 9. Simple Linear Regression/4. How LR Works.mp4 59MB 6. Hypothesis Testing/6. z Table.mp4 59MB 1. Python Fundamentals/18. Sets.mp4 58MB 22. Unsupervised Learning/3. Kmeans.mp4 58MB 13. KNN/4. Accuracy of KNN.mp4 57MB 18. Support Vector Machine (SVM)/12. Case Study 3 Part1.mp4 56MB 16. Naive Bayes/7. Laplace Smoothing.mp4 55MB 11. HotstarNetflix Real world Case Study for Multiple Linear Regression/3. Building Model Part1.mp4 55MB 5. Inferential Statistics/2. Probability Theory.mp4 55MB 16. Naive Bayes/5. Naive Bayes On Text Data Part1.mp4 55MB 26. Project Kaggle/10. Response encoding and one hot encoder.mp4 55MB 13. KNN/1. Introduction to Classification.mp4 54MB 7. Data Visualisation/4. Seaborn On Time Series Data.mp4 54MB 22. Unsupervised Learning/4. Maths Behind Kmeans.mp4 54MB 8. Exploratory Data Analysis/7. Data Sourcing and Cleaning part6.mp4 54MB 20. Ensembling/11. Adaboost Case Study.mp4 54MB 9. Simple Linear Regression/8. LR Case Study Part2.mp4 53MB 13. KNN/13. Classification Case3.mp4 53MB 9. Simple Linear Regression/5. Some Fun With Maths Behind LR.mp4 53MB 9. Simple Linear Regression/6. R Square.mp4 52MB 13. KNN/12. Classification Case2.mp4 52MB 15. Model Selection Part1/1. Model Creation Case1.mp4 52MB 22. Unsupervised Learning/6. Kmeans plus.mp4 52MB 26. Project Kaggle/21. Building Machine Learning model part6.mp4 51MB 26. Project Kaggle/15. Data pre-processing before building machine learning model.mp4 51MB 3. Pandas/6. Indexes.mp4 50MB 18. Support Vector Machine (SVM)/9. Kernel Part1.mp4 49MB 25. Deep Learning/2. Introduction.mp4 49MB 24. Advanced Machine Learning Algorithms/6. Regularization.mp4 49MB 11. HotstarNetflix Real world Case Study for Multiple Linear Regression/5. Building Model Part3.mp4 49MB 26. Project Kaggle/11. Laplace Smoothing and Calibrated classifier.mp4 48MB 13. KNN/5. Effectiveness of KNN.mp4 48MB 13. KNN/6. Distance Metrics.mp4 48MB 13. KNN/3. Introduction to KNN.mp4 47MB 3. Pandas/10. groupby.mp4 47MB 9. Simple Linear Regression/9. LR Case Study Part3.mp4 46MB 16. Naive Bayes/6. Naive Bayes On Text Data Part2.mp4 46MB 10. Multiple Linear Regression/10. Case Study Part5.mp4 46MB 26. Project Kaggle/13. Second Categorical column.mp4 46MB 23. Dimension Reduction/4. Case Study Part1.mp4 45MB 24. Advanced Machine Learning Algorithms/3. Example Part2.mp4 45MB 17. Logistic Regression/2. Sigmoid Function.mp4 44MB 19. Decision Tree/4. Gini Index.mp4 44MB 3. Pandas/5. Operations Part2.mp4 44MB 3. Pandas/8. Reading CSV.mp4 42MB 26. Project Kaggle/20. Building Machine Learning model part5.mp4 42MB 8. Exploratory Data Analysis/14. Derived Columns.mp4 42MB 17. Logistic Regression/3. Log Odds.mp4 42MB 20. Ensembling/9. Adaboost Part1.mp4 42MB 21. Model Selection Part2/2. Model Selection Part2.mp4 41MB 13. KNN/14. Classification Case4.mp4 41MB 11. HotstarNetflix Real world Case Study for Multiple Linear Regression/1. Introduction to the Problem Statement.mp4 41MB 19. Decision Tree/2. Example of DT.mp4 41MB 19. Decision Tree/8. Preventing Overfitting Issues in DT.mp4 40MB 13. KNN/2. Defining Classification Mathematically.mp4 40MB 24. Advanced Machine Learning Algorithms/5. Case study.mp4 40MB 24. Advanced Machine Learning Algorithms/7. Ridge and Lasso.mp4 40MB 11. HotstarNetflix Real world Case Study for Multiple Linear Regression/6. Verification of Model.mp4 39MB 20. Ensembling/1. Introduction to Ensembles.mp4 39MB 3. Pandas/1. Introduction.mp4 39MB 20. Ensembling/15. XGboost Algorithm.mp4 39MB 5. Inferential Statistics/12. Sampling.mp4 39MB 20. Ensembling/10. Adaboost Part2.mp4 38MB 26. Project Kaggle/18. Building Machine Learning model part3.mp4 38MB 22. Unsupervised Learning/12. Hierarchial Clustering.mp4 38MB 6. Hypothesis Testing/4. OneTwo Tailed Tests.mp4 38MB 12. Gradient Descent/5. Gradient Descent.mp4 38MB 1. Python Fundamentals/6. Numeric Operations in Python.mp4 37MB 12. Gradient Descent/4. Defining Cost Functions More Formally.mp4 37MB 22. Unsupervised Learning/7. Value of K.mp4 36MB 21. Model Selection Part2/3. Model Selection Part3.mp4 36MB 20. Ensembling/14. Boosting Part2.mp4 36MB 9. Simple Linear Regression/2. Types of Machine Learning.mp4 35MB 15. Model Selection Part1/2. Model Creation Case2.mp4 35MB 5. Inferential Statistics/15. Confidence Interval Part1.mp4 35MB 22. Unsupervised Learning/13. Case Study.mp4 34MB 3. Pandas/11. Merging Part2.mp4 34MB 6. Hypothesis Testing/9. p Value.mp4 33MB 13. KNN/8. Finding k.mp4 33MB 18. Support Vector Machine (SVM)/6. Slack Variable.mp4 33MB 26. Project Kaggle/19. Building Machine Learning model part4.mp4 33MB 20. Ensembling/6. Introduction to Boosting.mp4 33MB 12. Gradient Descent/2. Pre-Req For Gradient Descent Part2.mp4 33MB 24. Advanced Machine Learning Algorithms/9. Model Selection.mp4 31MB 6. Hypothesis Testing/1. Introduction.mp4 31MB 24. Advanced Machine Learning Algorithms/1. Introduction.mp4 31MB 3. Pandas/9. Merging Part1.mp4 30MB 25. Deep Learning/4. Perceptron.mp4 30MB 19. Decision Tree/1. Introduction.mp4 30MB 8. Exploratory Data Analysis/9. Data Cleaning part2.mp4 30MB 6. Hypothesis Testing/12. t- distribution Part2.mp4 29MB 19. Decision Tree/5. Information Gain Part1.mp4 29MB 13. KNN/7. Distance Metrics Part2.mp4 29MB 6. Hypothesis Testing/2. NULL And Alternate Hypothesis.mp4 29MB 5. Inferential Statistics/6. Without Experiment.mp4 29MB 22. Unsupervised Learning/2. Segmentation.mp4 29MB 6. Hypothesis Testing/3. Examples.mp4 28MB 4. Some Fun With Maths/4. Linear Algebra Going From 2D to nD Part1.mp4 28MB 3. Pandas/12. Pivot Table.mp4 28MB 24. Advanced Machine Learning Algorithms/2. Example Part1.mp4 27MB 1. Python Fundamentals/12. String Part2.mp4 27MB 19. Decision Tree/6. Information Gain Part2.mp4 27MB 16. Naive Bayes/8. Bernoulli Naive Bayes.mp4 27MB 18. Support Vector Machine (SVM)/2. Hyperplane Part1.mp4 27MB 12. Gradient Descent/7. Closed Form Vs Gradient Descent.mp4 27MB 17. Logistic Regression/1. Introduction.mp4 27MB 6. Hypothesis Testing/7. Examples.mp4 26MB 4. Some Fun With Maths/5. Linear Algebra 2D to nD Part2.mp4 26MB 5. Inferential Statistics/13. Sampling Distribution.mp4 26MB 16. Naive Bayes/11. Case Study 2 Part2.mp4 25MB 2. Numpy/1. Introduction.mp4 25MB 6. Hypothesis Testing/5. Critical Value Method.mp4 25MB 8. Exploratory Data Analysis/12. Segmented Analysis.mp4 24MB 5. Inferential Statistics/4. Expected Values Part1.mp4 24MB 5. Inferential Statistics/3. Probability Distribution.mp4 24MB 18. Support Vector Machine (SVM)/4. Maths Behind SVM.mp4 24MB 14. Model Performance Metrics/3. Performance Metrics Part3.mp4 24MB 5. Inferential Statistics/11. z Score.mp4 24MB 20. Ensembling/12. XGBoost.mp4 23MB 12. Gradient Descent/6. Optimisation.mp4 22MB 6. Hypothesis Testing/11. t- distribution Part1.mp4 21MB 5. Inferential Statistics/9. PDF.mp4 21MB 19. Decision Tree/3. Homogenity.mp4 21MB 24. Advanced Machine Learning Algorithms/10. Adjusted R Square.mp4 20MB 5. Inferential Statistics/10. Normal Distribution.mp4 19MB 22. Unsupervised Learning/11. More on Segmentation.mp4 18MB 20. Ensembling/7. Weak Learners.mp4 18MB 9. Simple Linear Regression/3. Introduction to Linear Regression (LR).mp4 18MB 5. Inferential Statistics/7. Binomial Distribution.mp4 18MB 1. Python Fundamentals/7. Logical Operations.mp4 17MB 6. Hypothesis Testing/8. More Examples.mp4 16MB 10. Multiple Linear Regression/1. Introduction.mp4 16MB 20. Ensembling/4. Runtime.mp4 16MB 8. Exploratory Data Analysis/3. Data Sourcing and Cleaning part2.mp4 16MB 8. Exploratory Data Analysis/2. Data Sourcing and Cleaning part1.mp4 16MB 19. Decision Tree/7. Advantages and Disadvantages of DT.mp4 15MB 18. Support Vector Machine (SVM)/1.1 SVM.zip.zip 15MB 6. Hypothesis Testing/10. Types of Error.mp4 15MB 20. Ensembling/8. Shallow Decision Tree.mp4 15MB 20. Ensembling/3. Advantages.mp4 15MB 5. Inferential Statistics/5. Expected Values Part2.mp4 14MB 20. Ensembling/13. Boosting Part1.mp4 14MB 5. Inferential Statistics/16. Confidence Interval Part2.mp4 13MB 12. Gradient Descent/3. Cost Functions.mp4 13MB 5. Inferential Statistics/14. Central Limit Theorem.mp4 13MB 8. Exploratory Data Analysis/6. Data Sourcing and Cleaning part5.mp4 12MB 22. Unsupervised Learning/8. Hopkins test.mp4 12MB 3. Pandas/4. Operations Part1.mp4 12MB 9. Simple Linear Regression/1. Introduction to Machine Learning.mp4 11MB 18. Support Vector Machine (SVM)/5. Support Vectors.mp4 11MB 8. Exploratory Data Analysis/5. Data Sourcing and Cleaning part4.mp4 10MB 5. Inferential Statistics/1. Inferential Statistics.mp4 10MB 1. Python Fundamentals/4. Python Introduction.mp4 10MB 1. Python Fundamentals/13. List Part1.mp4 10MB 8. Exploratory Data Analysis/4. Data Sourcing and Cleaning part3.mp4 10MB 22. Unsupervised Learning/5. More Maths.mp4 9MB 25. Deep Learning/1. Expectations.mp4 9MB 13. KNN/9. KNN on Regression.mp4 9MB 23. Dimension Reduction/1.1 PCA code for udemy.zip.zip 9MB 5. Inferential Statistics/8. Commulative Distribution.mp4 8MB 10. Multiple Linear Regression/5. Adjusted R Square.mp4 8MB 22. Unsupervised Learning/1.1 Unsupervised.zip.zip 7MB 9. Simple Linear Regression/10. Residual Square Error (RSE).mp4 5MB 19. Decision Tree/1.1 DT_forudemy.zip.zip 4MB 8. Exploratory Data Analysis/1. Introduction.mp4 4MB 1. Python Fundamentals/3.2 Installing-Python.Teclov.pdf.pdf 1MB 13. KNN/1.1 KNN.zip.zip 1MB 26. Project Kaggle/1.2 Teclov Project - Medical treatment.ipynb.zip.zip 1MB 20. Ensembling/1.1 Boosting.zip.zip 1MB 7. Data Visualisation/1.1 Datavisual.zip.zip 1MB 24. Advanced Machine Learning Algorithms/1.1 AdvanceReg.zip.zip 1MB 20. Ensembling/1.2 RF_forudemy.zip.zip 1MB 17. Logistic Regression/1.1 LogisticReg.zip.zip 984KB 10. Multiple Linear Regression/1.1 Multplr_LR_Code_for Udemy.zip.zip 521KB 15. Model Selection Part1/1.1 CrossValidation_Linear Regression.zip.zip 342KB 16. Naive Bayes/1.1 NaiveBayes.zip.zip 266KB 11. HotstarNetflix Real world Case Study for Multiple Linear Regression/1.1 Hotstarcode-for-udemy.zip.zip 255KB 12. Gradient Descent/1.1 Gradient+Descent+Updated.zip.zip 161KB 6. Hypothesis Testing/1.2 t-table.pdf.pdf 147KB 9. Simple Linear Regression/1.1 code-LR-Teclov.zip.zip 77KB 6. Hypothesis Testing/1.1 z-table.pdf.pdf 59KB 4. Some Fun With Maths/1. Linear Algebra Vectors.vtt 50KB 23. Dimension Reduction/1. Introduction.vtt 32KB 2. Numpy/3. Numpy Operations Part2.vtt 30KB 14. Model Performance Metrics/1. Performance Metrics Part1.vtt 27KB 23. Dimension Reduction/2. PCA.vtt 26KB 7. Data Visualisation/1. Matplotlib.vtt 26KB 7. Data Visualisation/2. Seaborn.vtt 26KB 8. Exploratory Data Analysis/10. Univariate Analysis Part1.vtt 26KB 23. Dimension Reduction/3. Maths Behind PCA.vtt 26KB 13. KNN/11. Classification Case1.vtt 25KB 2. Numpy/2. Numpy Operations Part1.vtt 24KB 21. Model Selection Part2/1. Model Selection Part1.vtt 23KB 1. Python Fundamentals/5. Variables in Python.vtt 21KB 17. Logistic Regression/4. Case Study.vtt 20KB 18. Support Vector Machine (SVM)/14. Case Study 4.vtt 20KB 26. Project Kaggle/6. Understanding Evaluation Matrix Log Loss.vtt 20KB 8. Exploratory Data Analysis/11. Univariate Analysis Part2.vtt 20KB 4. Some Fun With Maths/3. Linear Algebra Matrix Part2.vtt 19KB 14. Model Performance Metrics/2. Performance Metrics Part2.vtt 19KB 23. Dimension Reduction/5. Case Study Part2.vtt 19KB 15. Model Selection Part1/4. Gridsearch Case study Part2.vtt 18KB 25. Deep Learning/3. History.vtt 18KB 26. Project Kaggle/2. Playing With The Data.vtt 18KB 10. Multiple Linear Regression/9. Case Study Part4.vtt 18KB 16. Naive Bayes/1. Introduction to Naive Bayes.vtt 18KB 12. Gradient Descent/1. Pre-Req For Gradient Descent Part1.vtt 18KB 9. Simple Linear Regression/7. LR Case Study Part1.vtt 17KB 26. Project Kaggle/16. Building Machine Learning model part1.vtt 17KB 13. KNN/12. Classification Case2.vtt 17KB 4. Some Fun With Maths/2. Linear Algebra Matrix Part1.vtt 17KB 18. Support Vector Machine (SVM)/3. Hyperplane Part2.vtt 17KB 24. Advanced Machine Learning Algorithms/4. Optimal Solution.vtt 17KB 8. Exploratory Data Analysis/8. Data Cleaning part1.vtt 17KB 8. Exploratory Data Analysis/13. Bivariate Analysis.vtt 16KB 1. Python Fundamentals/3.1 Python-code-udemy.zip.zip 16KB 1. Python Fundamentals/4.1 Python-code-udemy.zip.zip 16KB 1. Python Fundamentals/1. Introduction to the course.vtt 16KB 13. KNN/5. Effectiveness of KNN.vtt 16KB 1. Python Fundamentals/11. String Part1.vtt 16KB 13. KNN/1. Introduction to Classification.vtt 16KB 3. Pandas/1.1 Pandas.zip.zip 15KB 20. Ensembling/2. Bagging.vtt 15KB 26. Project Kaggle/17. Building Machine Learning model part2.vtt 15KB 13. KNN/13. Classification Case3.vtt 15KB 13. KNN/4. Accuracy of KNN.vtt 15KB 26. Project Kaggle/9. First Categorical column analysis.vtt 15KB 13. KNN/6. Distance Metrics.vtt 15KB 21. Model Selection Part2/2. Model Selection Part2.vtt 15KB 1. Python Fundamentals/10. Functions.vtt 14KB 25. Deep Learning/5. Multi Layered Perceptron.vtt 14KB 26. Project Kaggle/11. Laplace Smoothing and Calibrated classifier.vtt 14KB 8. Exploratory Data Analysis/14. Derived Columns.vtt 14KB 5. Inferential Statistics/2. Probability Theory.vtt 14KB 13. KNN/14. Classification Case4.vtt 14KB 18. Support Vector Machine (SVM)/1. Introduction.vtt 14KB 13. KNN/3. Introduction to KNN.vtt 14KB 25. Deep Learning/6. Neural Network Playground.vtt 14KB 15. Model Selection Part1/3. Gridsearch Case study Part1.vtt 13KB 20. Ensembling/17. Case Study Part2.vtt 13KB 22. Unsupervised Learning/4. Maths Behind Kmeans.vtt 13KB 22. Unsupervised Learning/9. Case Study Part1.vtt 13KB 1. Python Fundamentals/14. List Part2.vtt 13KB 16. Naive Bayes/4. Practical Example from NB with Multiple Columns.vtt 13KB 1. Python Fundamentals/9. for while Loop.vtt 13KB 19. Decision Tree/9. DT Case Study Part1.vtt 13KB 7. Data Visualisation/3. Case Study.vtt 13KB 16. Naive Bayes/2. Bayes Theorem.vtt 13KB 22. Unsupervised Learning/1. Introduction to Clustering.vtt 13KB 18. Support Vector Machine (SVM)/10. Kernel Part2.vtt 13KB 12. Gradient Descent/5. Gradient Descent.vtt 13KB 15. Model Selection Part1/1. Model Creation Case1.vtt 12KB 9. Simple Linear Regression/6. R Square.vtt 12KB 10. Multiple Linear Regression/7. Case Study Part2.vtt 12KB 26. Project Kaggle/5. Train, Test And Cross Validation Split.vtt 12KB 10. Multiple Linear Regression/3. Case Study part2.vtt 12KB 11. HotstarNetflix Real world Case Study for Multiple Linear Regression/2. Playing With Data.vtt 12KB 26. Project Kaggle/3. Translating the Problem In Machine Learning World.vtt 12KB 19. Decision Tree/8. Preventing Overfitting Issues in DT.vtt 12KB 20. Ensembling/16. Case Study Part1.vtt 12KB 17. Logistic Regression/2. Sigmoid Function.vtt 12KB 13. KNN/8. Finding k.vtt 11KB 22. Unsupervised Learning/6. Kmeans plus.vtt 11KB 1. Python Fundamentals/2. Introduction to Kaggle.vtt 11KB 1. Python Fundamentals/3. Installation of Python and Anaconda.vtt 11KB 20. Ensembling/1. Introduction to Ensembles.vtt 11KB 8. Exploratory Data Analysis/9. Data Cleaning part2.vtt 11KB 9. Simple Linear Regression/5. Some Fun With Maths Behind LR.vtt 11KB 17. Logistic Regression/3. Log Odds.vtt 11KB 19. Decision Tree/10. DT Case Study Part2.vtt 11KB 16. Naive Bayes/9. Case Study 1.vtt 11KB 13. KNN/10. Case Study.vtt 11KB 24. Advanced Machine Learning Algorithms/3. Example Part2.vtt 11KB 24. Advanced Machine Learning Algorithms/8. Case Study.vtt 11KB 16. Naive Bayes/3. Practical Example from NB with One Column.vtt 11KB 26. Project Kaggle/7. Building A Worst Model.vtt 11KB 25. Deep Learning/2. Introduction.vtt 11KB 1. Python Fundamentals/15. List Part3.vtt 10KB 1. Python Fundamentals/16. List Part4.vtt 10KB 24. Advanced Machine Learning Algorithms/6. Regularization.vtt 10KB 18. Support Vector Machine (SVM)/6. Slack Variable.vtt 10KB 1. Python Fundamentals/17. Tuples.vtt 10KB 6. Hypothesis Testing/4. OneTwo Tailed Tests.vtt 10KB 22. Unsupervised Learning/3. Kmeans.vtt 10KB 1. Python Fundamentals/8. If else Loop.vtt 10KB 16. Naive Bayes/5. Naive Bayes On Text Data Part1.vtt 10KB 4. Some Fun With Maths/4. Linear Algebra Going From 2D to nD Part1.vtt 10KB 9. Simple Linear Regression/4. How LR Works.vtt 10KB 18. Support Vector Machine (SVM)/12. Case Study 3 Part1.vtt 10KB 26. Project Kaggle/4. Dealing with Text Data.vtt 10KB 5. Inferential Statistics/12. Sampling.vtt 10KB 26. Project Kaggle/1. Introduction to the Problem Statement.vtt 10KB 3. Pandas/2. Series.vtt 10KB 18. Support Vector Machine (SVM)/9. Kernel Part1.vtt 9KB 3. Pandas/7. loc and iloc.vtt 9KB 3. Pandas/3. DataFrame.vtt 9KB 11. HotstarNetflix Real world Case Study for Multiple Linear Regression/4. Building Model Part2.vtt 9KB 13. KNN/7. Distance Metrics Part2.vtt 9KB 6. Hypothesis Testing/1. Introduction.vtt 9KB 19. Decision Tree/2. Example of DT.vtt 9KB 26. Project Kaggle/21. Building Machine Learning model part6.vtt 9KB 22. Unsupervised Learning/10. Case Study Part2.vtt 9KB 22. Unsupervised Learning/12. Hierarchial Clustering.vtt 9KB 13. KNN/2. Defining Classification Mathematically.vtt 9KB 9. Simple Linear Regression/2. Types of Machine Learning.vtt 9KB 19. Decision Tree/1. Introduction.vtt 9KB 12. Gradient Descent/2. Pre-Req For Gradient Descent Part2.vtt 9KB 26. Project Kaggle/12. Significance of first categorical column.vtt 9KB 16. Naive Bayes/10. Case Study 2 Part1.vtt 9KB 19. Decision Tree/4. Gini Index.vtt 9KB 10. Multiple Linear Regression/6. Case Study Part1.vtt 9KB 6. Hypothesis Testing/6. z Table.vtt 9KB 20. Ensembling/15. XGboost Algorithm.vtt 9KB 15. Model Selection Part1/2. Model Creation Case2.vtt 9KB 22. Unsupervised Learning/2. Segmentation.vtt 9KB 12. Gradient Descent/4. Defining Cost Functions More Formally.vtt 9KB 26. Project Kaggle/14. Third Categorical column.vtt 9KB 10. Multiple Linear Regression/2. Case Study part1.vtt 9KB 18. Support Vector Machine (SVM)/8. SVM Case Study Part2.vtt 8KB 18. Support Vector Machine (SVM)/11. Case Study 2.vtt 8KB 1. Python Fundamentals/19. Dictionaries.vtt 8KB 20. Ensembling/9. Adaboost Part1.vtt 8KB 25. Deep Learning/4. Perceptron.vtt 8KB 10. Multiple Linear Regression/11. Case Study Part6 (RFE).vtt 8KB 17. Logistic Regression/1. Introduction.vtt 8KB 4. Some Fun With Maths/5. Linear Algebra 2D to nD Part2.vtt 8KB 18. Support Vector Machine (SVM)/4. Maths Behind SVM.vtt 8KB 1. Python Fundamentals/20. Comprehentions.vtt 8KB 20. Ensembling/10. Adaboost Part2.vtt 8KB 3. Pandas/1. Introduction.vtt 8KB 20. Ensembling/14. Boosting Part2.vtt 8KB 1. Python Fundamentals/18. Sets.vtt 8KB 8. Exploratory Data Analysis/12. Segmented Analysis.vtt 8KB 10. Multiple Linear Regression/4. Case Study part3.vtt 8KB 24. Advanced Machine Learning Algorithms/7. Ridge and Lasso.vtt 8KB 10. Multiple Linear Regression/8. Case Study Part3.vtt 8KB 22. Unsupervised Learning/7. Value of K.vtt 8KB 6. Hypothesis Testing/2. NULL And Alternate Hypothesis.vtt 8KB 3. Pandas/6. Indexes.vtt 7KB 5. Inferential Statistics/15. Confidence Interval Part1.vtt 7KB 5. Inferential Statistics/6. Without Experiment.vtt 7KB 24. Advanced Machine Learning Algorithms/1. Introduction.vtt 7KB 1. Python Fundamentals/6. Numeric Operations in Python.vtt 7KB 26. Project Kaggle/8. Evaluating Worst ML Model.vtt 7KB 3. Pandas/10. groupby.vtt 7KB 3. Pandas/8. Reading CSV.vtt 7KB 20. Ensembling/5. Case study.vtt 7KB 20. Ensembling/18. Case Study Part3.vtt 7KB 5. Inferential Statistics/13. Sampling Distribution.vtt 7KB 12. Gradient Descent/8. Gradient Descent case study.vtt 7KB 19. Decision Tree/5. Information Gain Part1.vtt 7KB 6. Hypothesis Testing/3. Examples.vtt 7KB 16. Naive Bayes/6. Naive Bayes On Text Data Part2.vtt 7KB 26. Project Kaggle/10. Response encoding and one hot encoder.vtt 7KB 22. Unsupervised Learning/13. Case Study.vtt 7KB 24. Advanced Machine Learning Algorithms/9. Model Selection.vtt 7KB 18. Support Vector Machine (SVM)/7. SVM Case Study Part1.vtt 6KB 20. Ensembling/6. Introduction to Boosting.vtt 6KB 6. Hypothesis Testing/9. p Value.vtt 6KB 2. Numpy/1. Introduction.vtt 6KB 11. HotstarNetflix Real world Case Study for Multiple Linear Regression/1. Introduction to the Problem Statement.vtt 6KB 14. Model Performance Metrics/3. Performance Metrics Part3.vtt 6KB 18. Support Vector Machine (SVM)/13. Case Study 3 Part2.vtt 6KB 18. Support Vector Machine (SVM)/2. Hyperplane Part1.vtt 6KB 10. Multiple Linear Regression/10. Case Study Part5.vtt 6KB 3. Pandas/5. Operations Part2.vtt 6KB 23. Dimension Reduction/4. Case Study Part1.vtt 6KB 24. Advanced Machine Learning Algorithms/2. Example Part1.vtt 6KB 20. Ensembling/11. Adaboost Case Study.vtt 6KB 11. HotstarNetflix Real world Case Study for Multiple Linear Regression/3. Building Model Part1.vtt 6KB 19. Decision Tree/3. Homogenity.vtt 6KB 12. Gradient Descent/7. Closed Form Vs Gradient Descent.vtt 6KB 3. Pandas/11. Merging Part2.vtt 6KB 19. Decision Tree/6. Information Gain Part2.vtt 6KB 26. Project Kaggle/15. Data pre-processing before building machine learning model.vtt 6KB 7. Data Visualisation/4. Seaborn On Time Series Data.vtt 6KB 9. Simple Linear Regression/9. LR Case Study Part3.vtt 6KB 5. Inferential Statistics/4. Expected Values Part1.vtt 6KB 22. Unsupervised Learning/11. More on Segmentation.vtt 5KB 5. Inferential Statistics/3. Probability Distribution.vtt 5KB 9. Simple Linear Regression/8. LR Case Study Part2.vtt 5KB 5. Inferential Statistics/9. PDF.vtt 5KB 5. Inferential Statistics/11. z Score.vtt 5KB 5. Inferential Statistics/10. Normal Distribution.vtt 5KB 26. Project Kaggle/13. Second Categorical column.vtt 5KB 2. Numpy/1.1 Teclov-numpy.ipynb.zip.zip 5KB 26. Project Kaggle/20. Building Machine Learning model part5.vtt 5KB 20. Ensembling/3. Advantages.vtt 5KB 12. Gradient Descent/6. Optimisation.vtt 5KB 16. Naive Bayes/7. Laplace Smoothing.vtt 5KB 11. HotstarNetflix Real world Case Study for Multiple Linear Regression/6. Verification of Model.vtt 5KB 20. Ensembling/12. XGBoost.vtt 5KB 20. Ensembling/4. Runtime.vtt 5KB 11. HotstarNetflix Real world Case Study for Multiple Linear Regression/5. Building Model Part3.vtt 5KB 6. Hypothesis Testing/5. Critical Value Method.vtt 5KB 3. Pandas/12. Pivot Table.vtt 4KB 19. Decision Tree/7. Advantages and Disadvantages of DT.vtt 4KB 8. Exploratory Data Analysis/7. Data Sourcing and Cleaning part6.vtt 4KB 3. Pandas/9. Merging Part1.vtt 4KB 24. Advanced Machine Learning Algorithms/5. Case study.vtt 4KB 5. Inferential Statistics/7. Binomial Distribution.vtt 4KB 26. Project Kaggle/18. Building Machine Learning model part3.vtt 4KB 6. Hypothesis Testing/11. t- distribution Part1.vtt 4KB 24. Advanced Machine Learning Algorithms/10. Adjusted R Square.vtt 4KB 8. Exploratory Data Analysis/2. Data Sourcing and Cleaning part1.vtt 4KB 18. Support Vector Machine (SVM)/5. Support Vectors.vtt 4KB 26. Project Kaggle/19. Building Machine Learning model part4.vtt 4KB 5. Inferential Statistics/5. Expected Values Part2.vtt 4KB 8. Exploratory Data Analysis/5. Data Sourcing and Cleaning part4.vtt 4KB 8. Exploratory Data Analysis/6. Data Sourcing and Cleaning part5.vtt 4KB 20. Ensembling/13. Boosting Part1.vtt 4KB 10. Multiple Linear Regression/1. Introduction.vtt 4KB 6. Hypothesis Testing/7. Examples.vtt 4KB 1. Python Fundamentals/4. Python Introduction.vtt 4KB 1. Python Fundamentals/12. String Part2.vtt 3KB 6. Hypothesis Testing/10. Types of Error.vtt 3KB 6. Hypothesis Testing/8. More Examples.vtt 3KB 8. Exploratory Data Analysis/4. Data Sourcing and Cleaning part3.vtt 3KB 1. Python Fundamentals/7. Logical Operations.vtt 3KB 5. Inferential Statistics/16. Confidence Interval Part2.vtt 3KB 20. Ensembling/7. Weak Learners.vtt 3KB 6. Hypothesis Testing/12. t- distribution Part2.vtt 3KB 5. Inferential Statistics/1. Inferential Statistics.vtt 3KB 22. Unsupervised Learning/8. Hopkins test.vtt 3KB 5. Inferential Statistics/14. Central Limit Theorem.vtt 3KB 9. Simple Linear Regression/3. Introduction to Linear Regression (LR).vtt 3KB 16. Naive Bayes/11. Case Study 2 Part2.vtt 3KB 13. KNN/9. KNN on Regression.vtt 3KB 1. Python Fundamentals/13. List Part1.vtt 3KB 22. Unsupervised Learning/5. More Maths.vtt 3KB 12. Gradient Descent/3. Cost Functions.vtt 3KB 25. Deep Learning/1. Expectations.vtt 3KB 20. Ensembling/8. Shallow Decision Tree.vtt 3KB 5. Inferential Statistics/8. Commulative Distribution.vtt 3KB 8. Exploratory Data Analysis/3. Data Sourcing and Cleaning part2.vtt 3KB 9. Simple Linear Regression/1. Introduction to Machine Learning.vtt 2KB 16. Naive Bayes/8. Bernoulli Naive Bayes.vtt 2KB 3. Pandas/4. Operations Part1.vtt 1KB 9. Simple Linear Regression/10. Residual Square Error (RSE).vtt 1KB 8. Exploratory Data Analysis/1. Introduction.vtt 897B 10. Multiple Linear Regression/5. Adjusted R Square.vtt 855B udemycoursedownloader.com.url 132B Udemy Course downloader.txt 94B